Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

114results about How to "High electrochemical capacity" patented technology

Carbon-sulphur composite used for cathode material of lithium sulphur battery as well as preparation method and application thereof

The invention relates to a carbon-sulphur composite used for a cathode material of a lithium sulphur battery as well as a preparation method and application thereof. The carbon-sulphur composite comprises a carbon material and elemental sulphur, wherein the carbon material is formed by doping mesoporous carbon with the aperture of 2-5nm and electroconductive carbon with the aperture of 30-70nm, and the electroconductive carbon with the aperture of 30-70nm contains micropores with the aperture of 0.5-1.7nm; and the elemental sulphur accounts for 10-90wt% of the total quantity of the composite. Abundant micropores guarantee that the carbon material has larger specific surface, adsorption capacity to polysulphide is stronger, and dissolution of the polysulphide can be effectively limited, so that stability of a sulphur electrode is improved. Meso pores in porous distribution can load more sulphur active substances, electrochemical capacity of a composite material is improved, and diffusion and transmission of lithium ions and electrolyte solution can be facilitated, so that reduction polarization of the elemental sulphur is reduced and discharge plateau of the elemental sulphur is improved.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Negative pole made of silicon/graphite nanosheet composite material of lithium ion battery and preparation method thereof

The invention discloses a negative pole made of a silicon/graphite nanosheet composite material of a lithium ion battery, which comprises the following components in percentage by mass: 85 to 95 percent of nanometer silicon powder-graphite nanosheet composite material, and 5 to 15 percent of polyvinylidene fluoride, wherein the content of nanometer silicon powder is between 20 and 75 percent in the nanometer silicon powder-graphite nanosheet composite material. A preparation method thereof comprises the steps of: preparing graphite oxide, preparing a mixed dispersion system of the nanometer silicon powder and graphite oxide nanosheets; adding a reducing agent, namely hydrazine hydrate into the mixed dispersion system of the nanometer silicon powder and the graphite oxide nanosheets, and reducing the graphite oxide nanosheets into graphite nanosheets to obtain a composite material of the nanometer silicon powder and the graphite nanosheets; and fully mixing the composite material of the nanometer silicon powder and the graphite nanosheets with N-methylpyrrolidone sol of the polyvinylidene fluoride, blending the mixture into paste, evenly coating the paste onto a copper coil, and performing drying and roller compaction. The negative pole made of the silicon/graphite nanosheet composite material of the lithium ion battery has high electrochemical capacity and good cycling stability performance.
Owner:ZHEJIANG UNIV

Method for recovering lead plaster of negative pole of disused lead acid storage battery and application of recovered lead plaster

The invention discloses a method for recovering lead plaster of the negative pole of a disused lead acid storage battery and application of the recovered lead plaster. A preparation method of superfine lead powder comprises the following steps: firstly, a disused battery is fully charged; secondly, the lead plaster of the negative pole is separated from the lead acid storage battery; thirdly, the main substance of the lead plaster of the negative pole is changed into a lead raw material mainly composed of PbO and Pb via high temperature and humidity solidification; and lastly, dry grinding or crumbling of the lead raw material is carried out under the condition of oxygen, or wet treatment is carried out by using organic salt and organic acid to obtain superfine lead powder. The recovery method disclosed by the invention is low in cost, simple and convenient in process, high in recovery rate of lead, low in energy consumption and easy to achieve industrialization, and causes minor pollution to the environment during recovering the lead. The method directly prepares superfine lead powder which can be directly used to produce storage batteries. The superfine PbO powder prepared by the method has good performance, is high in technology added value, and can obtain a battery pole plate which has high electrochemistry capacity and a long charging/discharge service life.
Owner:SHENZHEN CENT POWER TECH

Titanium acid lithium battery cathode material containing rare metal elements

InactiveCN102054963AImprove fast charge and discharge performanceHigh electrochemical capacityCell electrodesIndustrial scaleRare-earth element
The invention relates to titanium acid lithium battery cathode material containing rare metal elements, which comprises a synthesized lithium titanate material. A or a plurality of rare metal elements are contained in the lithium titanate material; the rare metal elements adopt Zr, Al, La, Ce, Pr, Nd, Sm and Dy or Ho; the contents of the rare metal elements are 0.01-3 wt percent by oxidate; the lithium and titanium molar ratio in the lithium titanate material is 0.7-1.2; and the titanium acid lithium battery cathode material is produced by adopting the processes of material mixing, ball milling and sieving, high-temperature treatment, secondary ball milling, high-temperature heat preservation and the like. The titanium acid lithium battery cathode material containing the rare metal elements is doped with the rare metal elements, improves the quick charging and discharging properties, improves the electrochemical capacity and has excellent cycle performance, good repeatability and high consistency; and furthermore, the titanium acid lithium battery cathode material has the advantages of low raw material cost, short synthesis time, low temperature, low requirements for equipment and simple manufacturing process and is suitable for industrial scale production.
Owner:RISESUN MENGGULI NEW ENERGY SCIENCE & TECHNOLOGY CO LTD

Electrochemical insertion/deinsertion magnesium ion electrode with high capacity and stable circulation and preparation method

InactiveCN102142539AHigh electrochemical magnesium storage capacitySuper stable cycle performanceNon-aqueous electrolyte accumulator electrodesMaterials scienceMagnesium ion
The invention discloses an electrochemical insertion/deinsertion magnesium ion electrode with high capacity and stable circulation and a preparation method. The active material of the electrode is a composite nano-material of graphene nano-sheets and MoS2, and the balance is acetylene black and polyvinylidene fluoride. The mass percentage of each component is: 75-85% of active material of composite nano-material, 5-10%of acetylene black and 10% of polyvinylidene fluoride, wherein the mass ratio of the graphene nano-sheets and the MoS2 nano-material in the active material of composite nano-material is 1 to 1-4 to 1. The preparation method of the electrode comprises the following steps of: using graphite as a raw material to prepare graphite oxide nano-sheets with a method of chemical oxidation; in the presence of the graphite oxide nano-sheets, compounding to obtain the composite nano-material of the graphene nano-sheets/ MoS2 with a one-step hydrothermal in-situ reduction method; and finally using the composite nano-material of the graphene nano-sheets/ MoS2 as the active material to prepare the electrode. The electrode has not only high electrochemical magnesium intercalating reversible capacity but also good stable circulation property and is widely applied to the new generation of magnesium ion batteries.
Owner:ZHEJIANG UNIV

Method for preparing ultra-dispersed antimony selenide nanowires for sodium-ion battery negative electrodes with ultrasonic-assisted hydrothermal method

The invention relates to a method for preparing ultra-dispersed antimony selenide nanowires for sodium-ion battery negative electrodes with an ultrasonic-assisted hydrothermal method. The method includes: adding beta-cyclodextrin into distilled water, and performing ultrasonic oscillation to obtain a solution A; adding tartaric acid and antimony potassium tartrate into distilled water with stirring to obtain a solution B; dispersing selenium powder into hydrazine hydrate, and performing ultrasonic oscillation to obtain a wine red solution C; adding the solution B into the solution A drop by drop with stirring to obtain a mixed solution D; adding the wine red solution C into the mixed solution D drop by drop, and stirring evenly prior to hydrothermal reaction at the temperature of 130-180 DEG C for 3-24h to obtain the ultra-dispersed antimony selenide nanowires for sodium-ion battery negative electrodes. The ultra-dispersed Sb2Se3 nanowires for sodium-ion battery negative electrodes are prepared by adopting the rational additives and surfactants to effectively and successfully control the reaction process under the assistance of ultrasonic waves, and the method has the advantages of good reproducibility, high raw material utilization rate and short cycle and is applicable to large-scale production of Sb2Se3 electrode materials.
Owner:SHAANXI UNIV OF SCI & TECH

Preparation method of lithium-rich manganese-base anode material

The invention discloses a preparation method of a lithium-rich manganese-base anode material. A chemical general formula of the lithium-rich manganese-base anode material is xLi2MnO3<-(1-x)> Limo2, wherein x is larger than or equal to 0 and smaller than or equal to 1, and M adopts transition metal elements of Ni, Co and Mn. The preparation method of the lithium-rich manganese-base anode material comprises the steps as follows: (1), a transition metal salt solution is prepared; (2), a precipitant solution is prepared; (3), the metal salt solution is subjected to ultrasonic atomization and then sprayed into the precipitant solution, and stirring is performed while spraying is performed; (4), the stirring is stopped, still standing is performed, and a precipitated product after reaction is washed to obtain a transition metal precursor; (5), the transition metal precursor and Li salt are mixed, subjected to ball milling in a dispersing agent and dried to obtain a precursor; and (6), the precursor is sintered at the high temperature and cooled to obtain the lithium-rich manganese-base anode material product. According to the invention, the transition metal precursor with higher chemical homogeneity and smaller particle size is prepared in a spraying manner, and the lithium-rich manganese-base anode material with higher electrochemistry capacity, lower capacity fading and better rate capability is obtained after sintering.
Owner:HEFEI GUOXUAN HIGH TECH POWER ENERGY

Anode material of lithium cell and solid-phase sintering production method at high temperature

The invention relates to the anode material of a lithium battery. The general formula is LiMNO4, wherein, the M is Mg or Ca; the N is Ta, Nb or V. A method of high-temperature solid state sintering of the invention comprises the following steps: Li2O, MO and N2O5 are taken as raw materials; the M is Mg or Ca; the N is Ta, Nb or V; Li2O, MO and N2O5 of which the purity is 99.99 percent are fully mixed by a molar ratio of 1:2:1 and then ball milled in a ball mill; particle diameter of the powder is 1-2 micrometers; the powder is parched for 4 plus or minus 2 hours under a temperature of 200 DEG C and is planished tablet to be sintered in a high-temperature sintering furnace. The temperature of the furnace is raised to 1000 plus or minus 50 DEG C from the room temperature and is preserved for 8-20 hours; furnace cooling is carried out and the powder tablet is taken out to be crashed until the particle diameter is 0.8-1.6 micrometers; after evenly grinded and planished tablet, the powder is put into the high-temperature sintering furnace for the third time and the temperature is raised to 1400 plus or minus 50 DEG C from the room temperature; the furnace cooling is carried out after heat preservation for 25-36 hours; then the powder tablet is taken out to be crashed until the particle diameter is 0.5-1.2 micrometers.
Owner:NANJING UNIV

Nitrogen-doped carbon/nano-silicon composite negative electrode material and preparation method thereof

The invention discloses a preparation method of a nitrogen-doped carbon / nano-silicon composite negative electrode material, belonging to the field of new energy materials and electrochemistry. The method comprises the following steps: (1) putting nano-silicon powder into a solvent, conducting ultrasonic dispersion, adding an initiator solution, and conducting sufficient stirring and mixing to obtain a dispersion liquid A, wherein the particle size of the nano-silicon powder is 30-80 nm; (2) adding a carbon source into the dispersion liquid A obtained in the step (1), conducting stirring and mixing, carrying out a polymerization reaction, performing filtering, and washing and drying the obtained solid to obtain a precursor B, wherein the carbon source comprises at least one selected from pyrrole, dopamine and aniline, and a ratio of the mass of the nano-silicon powder to the volume of the carbon source is 0.15-0.25 g: 400-800 [mu]L; and (3) heating and calcining the precursor B obtainedin the step (2) and then conducting cooling to obtain the nitrogen-doped carbon / nano-silicon composite negative electrode material. The invention also provides the nitrogen-doped carbon / nano-siliconcomposite negative electrode material prepared by using the method and a lithium ion battery containing the nitrogen-doped carbon / nano-silicon composite negative electrode material.
Owner:SUN YAT SEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products