Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

32results about How to "Low hydrothermal reaction temperature" patented technology

Graphene/ stannic oxide nanometer compounding resistance type film gas sensor and manufacturing method thereof

The invention discloses a graphene/ stannic oxide nanometer compounding resistance type film gas sensor, which takes ceramics as a basal body. The surface of the ceramic basal body is photo-etched and evaporated with multiple pairs of interdigital gold electrodes, and is coated with gas-sensitive films of graphene and stannic oxide nanometer composite, and the manufactured resistance type film gas sensor has the advantages of simple manufacturing process and low cost. The gas-sensitive film is composed of a grapheme namosheet layer in a three-dimensional nano-structure and stannic oxide crystal particle composite with an orientated growth characteristic, the introduction of the graphene can favorably reduce the resistance of sensor elements, and the formation of the three-dimensional nano-structure can obviously enhance the specific surface area of the composite, thus the absorption and the diffusion of the gas can be promoted so as to greatly enhance the room temperature gas sensitive response sensitivity of elements. The graphene/stannic oxide nanometer compounding resistance type film gas sensor has the characteristics of high response sensitivity to low concentration ammonia, fast response, favorable recovering performanc, capability of carrying out the detection at the room temperature, and the like, which can be widely applied in the agricultural and industrial production process, and the room temperature detection and control of the concentration of ammonia in the atmospheric environment.
Owner:ZHEJIANG UNIV

NiFeMo ternary electrolytic water electrode and preparation method thereof

The invention discloses an NiFeMo ternary electrolytic water electrode and a preparation method thereof. Firstly, iron salt, nickel salt, urea and NH4F are used as raw materials under a low-temperature hydrothermal condition to prepare NiFe-LDH/NF, then NiFe-LDH/NF and a compound containing molybdenum are subjected to a low-temperature hydrothermal reaction to obtain Ni-Fetrace@NFM/NF, then Ni-Fetrace@NFM/NF is placed in a flowing reducing atmosphere for heat treatment for a certain time, and a final material of Ni/NiFeMoOx/NF is obtained; and in the process, an LDH substrate is reduced to Ninanoparticles, and mutually cross-linked with NiFe-MoOx generated by reduced molybdate to form a composite material with a hierarchical porous nanosheet structure. The hierarchical porous nanosheet structure facilitates bubble diffusion, a formed alloy is cross-linked with MoOx and combined with a conductive substrate to have excellent electrical conductivity, and in the way, the material has excellent reaction kinetics; and NiFe-MoOx with the high hydrogen evolution activity and the Ni nanoparticles with the high hydrogen evolution activity both endows the material with excellent hydrogen andoxygen evolution properties, and then catalytic performance of all electrolytic water with application prospects is obtained.
Owner:HUAZHONG AGRI UNIV

Hydro-thermal synthesis method of high-transmittance nano-scale magnesium lithium silicate

The invention discloses a hydro-thermal synthesis method of high-transmittance nano-scale magnesium lithium silicate. The hydro-thermal synthesis method is characterized by comprising steps as follows: firstly, montmorillonite is acidized and calcined; then, water-soluble lithium salt and water-soluble sodium salt are added, the matching ratio is adjusted, and the amount of substances of all elements in a reaction system meets the proportional relation: 0.2<m(Li) / m(montmorillonite)<0.8, 1<m(Na) / m (montmorillonite)<3; finally, the mixture is subjected to a reaction at the temperature of 60-95 DEG C for 1-3 h and fully dried at the temperature of 110-150 DEG C until the water content is not higher than 2%, and magnesium lithium silicate is prepared. Defects in the prior art are overcome, and the safe, environment-friendly, efficient and low-cost synthesis method of nano-scale magnesium lithium silicate is provided; according to the synthesis method, high-purity montmorillonite which has vast reserves in the natural world is taken as a starting raw material, and the nano-scale magnesium lithium silicate with high transmittance, excellent thickening and thixotropy and high adsorption force is produced by optimizing technological parameters of production and the ratio of reaction raw materials.
Owner:JIANGSU HEMINGS NEW MATERIALS TECH CO LTD

Zirconium-based arsenic removing material and preparation method and application thereof

The invention belongs to the technical fields of inorganic nonmetallic nanomaterial preparation and water purification environmental protection, in particular to high-specific surface area low-isoelectric point nano zirconium dioxide and a preparation method and application thereof in removing arsenic. The nano zirconium dioxide has the crystallized specific surface area of 161.8m<2>/g, the amorphous specific surface area of 327.1m<2>/g and the isoelectric point of about 3 to 4. The nano zirconium dioxide has higher arsenic-removing capacity, the saturated adsorption capacity of a crystallized sample exceeds 47mg/g, and the saturated adsorption capacity of an amorphous sample exceeds 83mg/g. ZrOCl2.8H2O, water and ammonia water serve as precursors of a hydrothermal reaction, and the method comprises the following steps of: performing hydrothermal reaction to obtain a zirconium oxide precipitate; washing, drying and grinding to obtain amorphous zirconium dioxide powder; and calcining to obtain the crystallized zirconium dioxide material. The process of preparing the nano zirconium dioxide is simple, the high-specific surface area low-isoelectric point nano zirconium dioxide can be obtained, and a novel arsenic removing material is provided for purification of arsenic-containing sewage and environmental protection.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Cathode material, alpha-Fe2O3, of high-capacity lithium ion battery and preparation method for material

The invention relates to a cathode material, alpha-Fe2O3, of a high-capacity lithium ion battery and a preparation method for the cathode material. According to the preparation method, soluble trivalent molysite and an alkali metal hydroxide easy to dissolve are adopted as raw materials, and the hematite alpha-Fe2O3 is prepared by a hydrothermal method. The preparation method comprises the following specific steps that: 1) aqueous solution of the trivalent molysite with molarity being 0.5mol/L-2mol/L and aqueous solution of the alkali metal hydroxide easy to dissolve with molarity being 2mol/L-6mol/L are prepared; 2) the aqueous solution of the trivalent molysite and the aqueous solution of the alkali metal hydroxide obtained in the step 1) are mixed to generate suspension, the suspension is stirred for certain time, and then ammonia water drops into the suspension, so that the pH value of the suspension is adjusted to be 9-13; and 3) the suspension obtained in the step 2) is poured into a hydrothermal reaction kettle which can be airtight, the hydrothermal reaction kettle is put into an oven to be heated at a temperature of 160 DEG C-200 DEG C and then is subjected to thermal insulation for 3 hours to 20 hours, and after the reaction is finished, a product is subjected to solid-liquid separation, washing and drying so as to obtain the alpha-Fe2O3. When serving as the cathode material of the lithium ion battery, the alpha-Fe2O3 prepared by the method has higher specific capacity and better cycling stability. According to the method, the operation is simple, the cost is low, additives are not required, and the product quality is stable.
Owner:SICHUAN UNIV

Three-dimensional hollow high-dispersion metal catalyst and preparation method thereof

The invention discloses a three-dimensional hollow high-dispersion metal catalyst and a preparation method thereof, and belongs to the technical field of industrial catalysis. The preparation method comprises the following steps of: preparing a three-dimensional hollow bimetallic oxide by a microwave hydrothermal method; carrying out oxygen plasma based modification and silane coupling agent basedsurface hydrophobic modification on the bimetallic oxide to obtain a modified three-dimensional hollow bimetallic oxide carrier; adding an active component nickel salt, an auxiliary agent group IVA element metal salt and a rare earth element metal salt; loading the active component and the auxiliary agent metal on the modified carrier by adopting a photodeposition technology; and carrying out roasting in an air flow at 400-600 DEG C to obtain the three-dimensional hollow high-dispersion metal catalyst. Based on the total mass of the catalyst, the catalyst comprises 20-40wt% of nickel, 0.01-5wt% of IVA group element metal and 0.01-5wt% of rare earth element metal. The catalyst is applied to catalyzing pyridine dehydrogenation coupling to synthesize 2, 2'-dipyridyl, has the advantages of low catalyst dosage, few side reactions, short process and the like, and has a good industrial application prospect.
Owner:SOUTHEAST UNIV

A kind of hydrothermal synthesis method of nanoscale magnesium lithium silicate with high light transmittance

The invention discloses a hydro-thermal synthesis method of high-transmittance nano-scale magnesium lithium silicate. The hydro-thermal synthesis method is characterized by comprising steps as follows: firstly, montmorillonite is acidized and calcined; then, water-soluble lithium salt and water-soluble sodium salt are added, the matching ratio is adjusted, and the amount of substances of all elements in a reaction system meets the proportional relation: 0.2<m(Li) / m(montmorillonite)<0.8, 1<m(Na) / m (montmorillonite)<3; finally, the mixture is subjected to a reaction at the temperature of 60-95 DEG C for 1-3 h and fully dried at the temperature of 110-150 DEG C until the water content is not higher than 2%, and magnesium lithium silicate is prepared. Defects in the prior art are overcome, and the safe, environment-friendly, efficient and low-cost synthesis method of nano-scale magnesium lithium silicate is provided; according to the synthesis method, high-purity montmorillonite which has vast reserves in the natural world is taken as a starting raw material, and the nano-scale magnesium lithium silicate with high transmittance, excellent thickening and thixotropy and high adsorption force is produced by optimizing technological parameters of production and the ratio of reaction raw materials.
Owner:JIANGSU HEMINGS NEW MATERIALS TECH CO LTD

Hollow-structure ferrous sulfide (at) carbon in-situ composite material and preparation method and application thereof

The invention relates to a hollow-structure ferrous sulfide (at) carbon in-situ composite material and a preparation method and application thereof. The preparation method comprises the following steps: 1, dissolving ferrous sulfate and glycerin in water, then dropwise adding alkali liquor till sediment appears, stopping dropwise adding, conducting stirring at the room temperature, and then conducting suction filtration, washing and drying to obtain a rod-like ferrous precursor; (2) dispersing the ferrous precursor in water, adding an organic sulfur source, stirring to react for at least 1 hour, heating to 130-150 DEG C to perform hydrothermal reaction, naturally cooling to room temperature, and performing suction filtration, washing and drying to obtain a ferrous sulfide precursor; and calcining the ferrous sulfide precursor, and cooling to obtain the ferrous sulfide (at) carbon in-situ composite material with the hollow structure. The ferrous sulfide (at) carbon in-situ composite material with the hollow rod-shaped structure is obtained through a template-free method and is applied to the potassium ion battery as an electrode active material, the obtained battery is long in cycle life and good in potassium storage performance, and a negative electrode structure is stable and does not pulverize or fall off.
Owner:JIANGSU UNIV OF TECH

Zirconium-based arsenic removing material and preparation method and application thereof

The invention belongs to the technical fields of inorganic nonmetallic nanomaterial preparation and water purification environmental protection, in particular to high-specific surface area low-isoelectric point nano zirconium dioxide and a preparation method and application thereof in removing arsenic. The nano zirconium dioxide has the crystallized specific surface area of 161.8m<2> / g, the amorphous specific surface area of 327.1m<2> / g and the isoelectric point of about 3 to 4. The nano zirconium dioxide has higher arsenic-removing capacity, the saturated adsorption capacity of a crystallized sample exceeds 47mg / g, and the saturated adsorption capacity of an amorphous sample exceeds 83mg / g. ZrOCl2.8H2O, water and ammonia water serve as precursors of a hydrothermal reaction, and the method comprises the following steps of: performing hydrothermal reaction to obtain a zirconium oxide precipitate; washing, drying and grinding to obtain amorphous zirconium dioxide powder; and calcining to obtain the crystallized zirconium dioxide material. The process of preparing the nano zirconium dioxide is simple, the high-specific surface area low-isoelectric point nano zirconium dioxide can be obtained, and a novel arsenic removing material is provided for purification of arsenic-containing sewage and environmental protection.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

A nanosheet array nickel cobaltate-carbon composite material and its preparation method and application

The invention provides a nanosheet array nickel cobalt oxide-carbon composite material, a method for preparing the same and application of the same. The method comprises the steps of: performing ultrasonic processing on wet tissues and obtaining wet tissue fibers after drying; adding nickel nitrate, cobalt nitrate, urea and hexamethylenetetramine into an ethanol aqueous solution to obtain a mixedsolution; soaking the wet tissue fibers into the mixed solution and then performing a hydrothermal reaction to obtain a wet tissue fiber base body carrying an Ni-Co precursor; performing a heating calcination reaction on the wet tissue fiber base body in a mixed gas atmosphere and, after cooling, obtaining the nanosheet array nickel cobalt oxide-carbon composite material. The method utilizes wet tissues which are common in daily life as templates, so that waste in life can be effectively utilized; the material is simple in operation method and is environmentally-friendly and the materials areeasy to obtain; the material has a broad application prospect in fields such as clean energy and catalysis. As an electrode of a super capacitor, the material has high specific capacitance and excellent circulation stability.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products