Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30results about How to "Many catalytic active sites" patented technology

A method for preparing a doped carbon material supported alloy bifunctional electrocatalyst that have a hollow polyhedral nanocage microstructure

InactiveCN108963278AThe synthesis method is simple and safeImprove electrocatalytic performanceCell electrodesAlloySolvent
The invention discloses a preparation method of a dual-functional electrocatalyst with a hollow polyhedral nano-cage microstructure doped with carbon material loading alloy, belonging to the field ofzinc Air Battery Catalyst Technology. The technical scheme of the invention mainly comprises the following steps of: adding an alcohol solution of cobalt nitrate and 2-Polyhedral ZIF- 67 precursor Wassynthesized by the reaction of methimidazole with ethanol at room temperature., and then that ZIF-67 precursor and that nickel source are heat and refluxed in an alcohol solvent to obtain hollow polyhedral nanocage product, and the obtained product is solvothermally react with the magnesium source and the boron source to obtain the target product. The catalyst of the invention introduces nickel and magnesium, so that the synergistic action between different components enhances the catalytic activity of the composite material, and the introduction of heteroatom boron effectively optimizes theelectronic structure of the material and improves the electrocatalytic performance. The catalyst of the invention and the preparation method thereof are prepared from zinc. The catalyst for air battery has a wide application prospect.
Owner:HENAN NORMAL UNIV

Macro preparation method for carbon doped zinc oxide-based visible-light catalyst

The invention belongs to the technical field of material chemistry, and particularly relates to a macro preparation method for a carbon doped zinc oxide-based visible-light catalyst. The method disclosed by the invention adopts a micro-molecular organic matter combustion-supporting method for macroscopically preparing the carbon commingled zinc oxide-based visible-light catalyst. The preparation principle of the catalyst is that the reaction heat of the combustion of the micro-molecular organic matter at a high temperature is used to realize effective sedimentation and doping of a carbon element in zinc oxide crystals; at the same time, a large number of gases are generated in reaction processes, products can be crushed effectively, so that small-sized carbon doped zinc oxide-based nano particles are obtained, and the macro preparation of the carbon doped zinc oxide-based visible-light catalyst is realized. Prepared nano-powder has the advantages that the dispersibility is good, the particle sizes are small, the sizes are uniform, the visible-light catalytic property is excellent, and the chemical stability is high; at the room temperature of 27 DEG C-33 DEG C and sunlight exposures, the visible-light catalyst can completely degrade an organic dyestuff rhodamine B in 15 minutes, so that the catalyst can be applied to the fields of controlling environmental pollutants and the like.
Owner:EAST CHINA UNIV OF SCI & TECH

Preparation method and application of high-specific-surface porous carbon modified by coal-tar pitch

The invention provides a preparation method for high-specific-surface porous carbon modified by coal-tar pitch. The preparation method comprises the following steps: dissolving cobalt nitrate in deionized water, carrying out stirring, and adding ammonia water; adding pitch-based active carbon obtained after one-step activation of coal-tar pitch and carrying out uniform mixing under stirring; subjecting a mixture obtained in the previous step to a hydro-thermal reaction and carrying out centrifugation; washing a solid obtained in the previous step and successively carrying out centrifugation, drying and grinding; and subjecting solid powder obtained after grinding to calcining in a tubular furnace in an inert gas environment so as to obtain the high-specific-surface porous carbon modified by the coal-tar pitch. The invention also provides a method for preparing a membrane electrode assembly for a fuel cell from the high-specific-surface porous carbon modified by the coal-tar pitch. Theporous carbon prepared in the invention has a high specific surface area and a porous structure, which is beneficial for transmission of substances like oxygen, so dependence on the precious metal Ptis greatly reduced; the raw material for preparation of the porous carbon is cheap coal-tar pitch; and the preparation method is simple in process, convenient to operate, low in cost, friendly to environment and suitable for industrial production.
Owner:DONGHUA UNIV

Copper-based graphene aerogel composite catalyst, gas diffusion electrode and application

The invention discloses a copper-based graphene aerogel composite catalyst, a gas diffusion electrode and application, and a preparation method of the copper-based graphene aerogel composite catalyst comprises the following steps: respectively dispersing a copper salt and graphene aerogel in ethylene glycol to obtain a copper salt precursor solution and a graphene aerogel dispersion liquid; and mixing a copper salt precursor solution and the graphene aerogel dispersion liquid to obtain a mixed solution, and carrying out one-step solvothermal reaction on the mixed solution to prepare the copper-based graphene aerogel composite catalyst. The copper-based graphene aerogel composite catalyst comprises graphene aerogel, coralline-shaped nano cuprous oxide rods and nano copper rods, wherein the coralline-shaped nano cuprous oxide rods and the nano copper rods are loaded on the graphene aerogel, and the diameter of each of the nano cuprous oxide rods and the nano copper rods is 40-60 nm. The coralline-shaped nano cuprous oxide rod and the nano copper rod loaded on the graphene aerogel construct a Cu < + > and Cu coexisting CO2 catalytic reduction interface environment, and the Cu < + > and Cu coexisting CO2 catalytic reduction interface environment is used for carbon dioxide electric reduction, so that the catalytic reaction efficiency can be improved.
Owner:CHINA PETROLEUM & CHEM CORP +1

A macro-preparation method of carbon-doped zinc oxide-based visible light catalyst

The invention belongs to the technical field of material chemistry, and particularly relates to a macro preparation method for a carbon doped zinc oxide-based visible-light catalyst. The method disclosed by the invention adopts a micro-molecular organic matter combustion-supporting method for macroscopically preparing the carbon commingled zinc oxide-based visible-light catalyst. The preparation principle of the catalyst is that the reaction heat of the combustion of the micro-molecular organic matter at a high temperature is used to realize effective sedimentation and doping of a carbon element in zinc oxide crystals; at the same time, a large number of gases are generated in reaction processes, products can be crushed effectively, so that small-sized carbon doped zinc oxide-based nano particles are obtained, and the macro preparation of the carbon doped zinc oxide-based visible-light catalyst is realized. Prepared nano-powder has the advantages that the dispersibility is good, the particle sizes are small, the sizes are uniform, the visible-light catalytic property is excellent, and the chemical stability is high; at the room temperature of 27 DEG C-33 DEG C and sunlight exposures, the visible-light catalyst can completely degrade an organic dyestuff rhodamine B in 15 minutes, so that the catalyst can be applied to the fields of controlling environmental pollutants and the like.
Owner:EAST CHINA UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products