Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

52results about How to "Stable electrode structure" patented technology

Lithium sulfide-porpous carbon compound positive material for lithium ion battery and preparation method thereof

The invention provides a lithium sulfide-porpous carbon compound positive material for a lithium ion battery and a preparation method thereof. The positive material is formed by compounding lithium sulfide and ordered porous carbon, wherein the mass fraction of the lithium sulfide in the compound material is 20-80%; and the lithium sulfide exists in the pore spaces of the porous carbon. The preparation method comprises the following steps: firstly, carrying out ball milling on the ordered porous carbon and sulfur in the presence of inert gas; then carrying out thermal processing on the milled mixture at the temperature of 145-155 DEG C so that the sulfur fully is dispersed into the porous carbon; and finally, reacting lithium with the sulfur so as to generate the lithium sulfide by a chemical or electrochemical method, thereby obtaining the positive material provided by the invention. According to the invention, the preparation process is simple, and the raw material source is wide; the prepared positive material is used in a mode of pre-embedding lithium in a positive electrode, metal lithium is not required to serve as a negative electrode, and a carbon negative electrode, a silicon negative electrode and the like are used, thereby improving the safety performance and the assembling performance; the positive material has the advantages of good conductivity, high capacity and good circulation performance; and the positive material has a wide application prospect and the preparation method is suitable for industrial production.
Owner:CENT SOUTH UNIV

Modified composite material containing silicon-based material, preparation method thereof and use thereof in lithium ion battery

The invention discloses a modified composite material containing a silicon base material, which comprises a silicon base core and a polymer cladding layer covering the surface of the core, and a preparation method and use thereof in a lithium ion battery. The method comprises the steps of : 1) adding a polymer into a liquid solvent and dispersing to obtain a slurry; 2) adding a silicon-based material or a mixture of that silicon-based material and the carbon material into the slurry and mixing the solid and liquid; 3) removing the solvent to obtain a modified composite material containing a silicon-based material. As the polymer coat layer is introduced on the surface of the silicon base core, so that the electrolyte can be isolated and the side reaction of the electrolyte on the surface of the silicon base core can be prevented; the method can also improve the crushing, electrode pulverization and peeling of the silicon-based negative electrode material in the process of processing and using, and reduce the electrode crushing and peeling caused by the huge volume expansion of the silicon-based material in the process of charging and discharging, so as to achieve the purpose of stabilizing the electrode structure and improving the cell cycle performance.
Owner:JIANGSU TAFEL NEW ENERGY TECH CO LTD +2

Preparation method of graphene-silicon carbon lithium ion battery negative electrode material

The invention relates to the technical field of preparation of an electrode material, and specifically relates to a preparation method of a graphene-silicon carbon lithium ion battery negative electrode material. The preparation method comprises the following steps of performing graphene coating on nanometer silicon particles, preparing a carbon coated primary composite material, and performing carbonization and mixing. Nanometer silicon is dispersed into interlayer or surfaces of the graphene sheets to form a spherical-like graphene/nanometer silicon composite material; by virtue of high mechanical performance and flexibility of graphene, deformation stress of silicon can be relieved, and by virtue of excellent conductivity and heat conducting performance, quick electron conduction and heat evacuation can be provided; after heat treatment, the carbon-coated primary composite material can be prepared through growth of carbon microspheres; by virtue of the formed carbon coating layer, direct contact between silicon and an electrolyte caused by the island effect of the silicon particles can be avoided, so that the structural stability and cycling performance of the material can be further improved; and the prepared silicon carbon negative electrode material has the advantages of high initial coulombic efficiency, stable cycling performance, high compaction density and stable electrode structure.
Owner:KEDA (ANHUI) NEW MATERIAL CO LTD

Nano silicon, preparation method thereof and application of nano silicon in silicon carbon composite cathode material and lithium ion battery

The invention provides nano silicon, a preparation method thereof and an application of the nano silicon in a silicon carbon composite cathode material and a lithium ion battery. The invention provides a method for preparing the pure silicon component nano silicon by a low-temperature molten salt method, the obtained nano silicon is the secondary particles with a particle size being 80-120 nm formed by assembling the primary silicon particles, which is very suitable for preparing the silicon carbon composite cathode material, the silicon carbon composite cathode material is employed for preparing the silicon carbon material by a machinery fusion and high-temperature pyrolysis method, the electronic conductivity of the silicon material is improved, the volume effect generated during an alloying and dealloying process of the silicon cathode can be effectively buffered, and the structural stability of the material during a cycle process is increased. The silicon carbon cathode material has the advantages of high initial coulomb efficiency, good cycle performance, high compacted density, and stable electrode structure, and the preparation process of the nano silicon and the silicon carbon composite cathode material is environment friendly and pollution-free.
Owner:EVE ENERGY CO LTD

Preparation and application of conductive carbon film-coated calcium nitride compound serving as anode material of lithium battery

The invention relates to preparation and application of an anode material of a lithium battery and aims to provide preparation and the application of a conductive carbon film-coated calcium nitride compound serving as the anode material of the lithium battery. The preparation method comprises the following steps of: after calcium metal is molten, spraying into polyethylene glycol liquid by using high purity nitrogen, and performing a reaction of the calcium fog drops and nitrogen in an nitriding atmosphere to obtain Ca3N2 microspheres so as to obtain a carbon-coated calcium nitride material primary product; and after filtering out a carbon-coated calcium nitride material, calcining for 2 to 3 hours again in the high purity nitrogen atmosphere and carrying out refining to obtain carbon-coated Ca3N2, or calcining for 2 to 3 hours again in vacuum to obtain a carbon-coated Ca3N2-Ca2N mixture. In the invention, a conductive carbon film is formed on the surface of Ca3N2 or Ca3N2-Ca2N, is favorable for stability of an electrode structure, has high heat stability and low cost, is easy to prepare and has no pollution. The conductive carbon film prepared by a spraying method has the advantages of uniform thickness and high conductivity. The electrode polarization is reduced. The speed and the capacity of the lithium battery are improved.
Owner:ZHEJIANG UNIV

Silicon-based and tin-based composite particles for lithium ion battery and preparation method thereof and negative electrode and lithium ion battery containing silicon-based and tin-based composite particles

The invention provides silicon-based and tin-based composite particles for a lithium ion battery and a preparation method thereof and negative electrode and a lithium ion battery containing the silicon-based and tin-based composite particles. The silicon-based and tin-based composite particles are characterized by being prepared from hollow tin particles or hollow tin oxide particles and a siliconlayer coating the outer surfaces of the hollow tin particles or hollow tin oxide particles. The invention also provides the negative electrode containing the composite particles and applied to a lithium ion secondary battery, and the lithium ion secondary battery with the negative electrode. The preparation method of the composite particles is simple; due to the hollow structure, the particles can effectively accommodate the volume expansion of silicon-based and tin-based materials in a lithium intercalation process, so as to maintain stability of the electrode structure. Moreover, an external silicon-based material can effectively prevent agglomeration of nano tin particles and maintain stability of a tin-based material, so as to obtain a lithium ion battery negative electrode compositematerial with great specific capacity and good cycle performance.
Owner:TSINGHUA UNIV

Conducting polymer film and positive pole piece modified by same

The invention discloses a conducting polymer film and a positive pole piece modified by the same. The conducting polymer film is prepared by a method comprising the following steps: (1) coating a film-forming base with an initiator and putting the film-forming base coated with the initiator into a closed container containing a conductive polymer monomer; and (2) controlling vacuum conditions of the closed container, evaporating the conductive polymer monomer, carrying out in-situ polymerization on the film-forming base coated with the initiator to form the film and then drying. The conducting polymer film disclosed by the invention is prepared by a vacuum evaporation coating process, so that the conducting polymer film with a uniform thickness can be formed without complicated and harsh condition control in the polymerization process; the obtained conducting polymer film is uniform in thickness and can be arranged between a positive electrode and a membrane; the side reaction between an electrode material and an electrolyte is inhibited; and the structure stability and the heat stability of the positive electrode material in battery charging and discharging processes are improved, thereby improving the electrochemical properties of the material.
Owner:HENAN NORMAL UNIV

Preparation method of lithium sodium titanate negative electrode material with multistage structure

The invention discloses a preparation method of a lithium sodium titanate negative electrode material with a multistage structure, and belongs to the technical field of lithium ion batteries. The method comprises the following specific steps: dissolving tetrabutyl titanate, lithium acetate and sodium nitrate in an alcohol solution, adding citric acid to serve as a chelating agent, then adding an amine compound, stirring to form gel, and performing vacuum drying; then mixing gamma-LiAlO2 with the dried gel, performing ball milling, performing preheating treatment in the air, then performing ball milling and calcining to obtain a Na2Li2Ti6O14@gamma-LiAlO2 material; putting the Na2Li2Ti6O14@gamma-LiAlO2 material into distilled water, performing ultrasonic treatment and adding sodium dodecyl benzene sulfonate; and pouring a dissolved pyrrole solution into the mixture, stirring, adding an initiator, centrifuging, washing and drying to obtain a target product. The synthesized negative electrode material has the advantages of uniform and consistent particles, high dispersity and high degree of crystallinity; with a stable multistage composite structure, the negative electrode material hasconsiderable wide-potential-window reversible capacity, high rate performance and stable cycle life.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY

Preparation method of lithium-titanate-cladding sulfur composite lithium-ion battery positive material

The invention relates to the preparation technology of a lithium-ion battery, and aims at providing a preparation method of a lithium-titanate-cladding sulfur composite lithium-ion battery positive material. The preparation method comprises the following steps of: adding organic acid and tetrabutyl titanate into ethyl alcohol to be ultrasonically dispersed to obtain a solution A; adding the organic acid into the ethyl alcohol, and adding deionized water lithium acetate to obtain a solution B; dropping the solution B into the solution A to obtain sol; adding organic acid into the sol to obtain a precursor sol; spraying the precursor sol into the air to form erythrocyte-shaped lithium titanate material precursor; placing the lithium titanate material precursor into a muffle furnace to be insulated after reaching a set temperature, thus obtaining the erythrocyte-shaped lithium titanate material; grinding and mixing single sulfur with the erythrocyte-shaped lithium titanate material, placing the mixture into a reactor to be heated in vacuum to complete a sulfur storage process, and cooling a product to the room temperature to obtain the lithium-titanate-cladding sulfur composite material. By adopting the method, the organic electrolyte is safe to use in the battery; good electrode reaction reversibility can be realized; good chemical stability and heat stability can be realized; the material is cheap and easy to prepare; no pollution exists.
Owner:ZHEJIANG UNIV

High-compaction silicon-carbon composite negative electrode material as well as preparation and application thereof

The invention belongs to the field of preparation of silicon-carbon negative electrode materials, and particularly discloses a silicon-carbon composite material based on low-oxygen-content porous silicon, which comprises silicon-carbon composite particles and a carbon component a, the silicon-carbon composite particles comprise amorphous carbon substrates, small-particle-size carbon particles b and low-oxygen-content porous silicon particles; the low-oxygen-content porous silicon particle comprises an inner core and a shell compounded on the surface of the inner core, wherein the inner core islocally non-crystallized silicon SiOy with a low oxygen-containing porous structure, and the shell is a thin carbon coating layer; 0 < y < 1; the thickness of the thin carbon coating layer is not more than 100nm the core and / or shell material is doped with a non-metallic element E; and the non-metallic element E is at least one of boron, nitrogen, phosphorus and sulfur. The invention also provides a preparation method of the material. Research finds that the material with the components and the morphological structure can show better reversible capacity, rate capability and cycling stability.
Owner:湖南宸宇富基新能源科技有限公司

Preparation method of multilevel structure titanate negative electrode material for lithium ion battery

The invention discloses a preparation method of a multilevel structure titanate negative electrode material for a lithium ion battery, and belongs to the technical field of lithium ion batteries. Themethod concretely comprises the following steps: dispersing a sodium source and a titanium source in a glycol and anhydrous ethanol mixed solution to form a solution A; dissolving a barium source in an aqueous solution of anhydrous ethanol to form a solution B; mixing and stirring the solution A and the solution B, heating the obtained solution until evaporative drying is achieved, placing the obtained precursor in a muffle furnace, and carrying out pre-calcining, ball milling and calcining to obtain a BaNa2Ti6O14 material; dispersing the material in an acetone solution, adding carbon nano-tubes, and stirring and heating the obtained solution until the solution is completely volatilized in order to obtain BaNa2Ti6O14-CNT; and carrying out mixing and ball-milling on the BaNa2Ti6O14-CNT andcarbon fibers, and sintering the obtained mixture in nitrogen to obtain the target product. The titanate negative electrode material obtained in the invention has a stable multilevel composite structure, so the titanate negative electrode material has the advantages of considerable wide potential window reversible capacity, excellent rate performances and stable cycle life.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY

In-situ generated cross-linked type lithium ion battery anode material adhesive as well as preparation method and lithium ion secondary battery thereof

The invention provides an in-situ generated cross-linked type lithium ion battery anode material adhesive which is a cross-linking product PM-PG of polyethylene maleic anhydride and propylene glycol alginate. The invention furthermore provides a preparation method of the cross-linked type lithium ion battery anode material adhesive. The preparation method comprises the following steps: dissolvingpolyethylene maleic anhydride and propylene glycol alginate into a solvent, and carrying out stirring at the room temperature to carry out a reaction, so as to obtain an adhesive solution. The invention furthermore provides a lithium ion battery anode material which consists of an active component, a conductive material and the cross-linked type lithium ion battery anode material adhesive. The invention furthermore provides a lithium ion secondary battery which comprises the lithium ion battery anode material. The cross-linked type lithium ion battery anode material adhesive provided by the invention comprises multiple polar bonds such as hydroxyl and carboxyl, and has good adhesiveness; and the cross-linked type lithium ion battery anode material adhesive provided by the invention has a 3D cross-linking network, and is capable of well covering active materials and conductive materials, and thus an electrode structure can be stabilized.
Owner:CHINA UNIV OF GEOSCIENCES (WUHAN)

Preparation method of nano ferrous sulfide/graphene composite positive electrode material

The invention discloses a preparation method of a nano ferrous sulfide / graphene composite positive electrode material. The ferrous sulfide / graphene composite material is prepared by using a ferroferric oxide / graphene composite material as a reaction product and introducing a sulfur source based on a chemical vapor deposition method. ferrous sulfide particles are uniformly dispersed on the surfaceof the graphene and are combined with the graphene stably, thereby preventing agglomeration of the nanoparticles during charging and discharging processes effectively, buffering the volume expansion,suppressing the dissolution of the reaction product in the electrolyte and thus guaranteeing the electrode structure stability during the charging and discharging processes. Meanwhile, the graphene provides a good conductive network to accelerate electron transport. Moreover, the preparation process is simple; the time is shortened; the cost is lowered; and the industrial production is easy to implement. The ferrous sulfide / graphene composite material prepared based on the method has the excellent electrochemical performance and is an ideal positive electrode material for a lithium ion battery. Therefore, the nano ferrous sulfide / graphene composite positive electrode material can be widely applied to portable electronic equipment, electric vehicles and aerospace and other fields.
Owner:UNIV OF SCI & TECH BEIJING

A cross-linked lithium-ion battery positive electrode material binder generated in situ, its preparation method and lithium-ion secondary battery

The invention provides an in-situ generated cross-linked type lithium ion battery anode material adhesive which is a cross-linking product PM-PG of polyethylene maleic anhydride and propylene glycol alginate. The invention furthermore provides a preparation method of the cross-linked type lithium ion battery anode material adhesive. The preparation method comprises the following steps: dissolvingpolyethylene maleic anhydride and propylene glycol alginate into a solvent, and carrying out stirring at the room temperature to carry out a reaction, so as to obtain an adhesive solution. The invention furthermore provides a lithium ion battery anode material which consists of an active component, a conductive material and the cross-linked type lithium ion battery anode material adhesive. The invention furthermore provides a lithium ion secondary battery which comprises the lithium ion battery anode material. The cross-linked type lithium ion battery anode material adhesive provided by the invention comprises multiple polar bonds such as hydroxyl and carboxyl, and has good adhesiveness; and the cross-linked type lithium ion battery anode material adhesive provided by the invention has a 3D cross-linking network, and is capable of well covering active materials and conductive materials, and thus an electrode structure can be stabilized.
Owner:CHINA UNIV OF GEOSCIENCES (WUHAN)

A kind of preparation method of multi-level structure titanate negative electrode material for lithium ion battery

The invention discloses a preparation method of a multilevel structure titanate negative electrode material for a lithium ion battery, and belongs to the technical field of lithium ion batteries. Themethod concretely comprises the following steps: dispersing a sodium source and a titanium source in a glycol and anhydrous ethanol mixed solution to form a solution A; dissolving a barium source in an aqueous solution of anhydrous ethanol to form a solution B; mixing and stirring the solution A and the solution B, heating the obtained solution until evaporative drying is achieved, placing the obtained precursor in a muffle furnace, and carrying out pre-calcining, ball milling and calcining to obtain a BaNa2Ti6O14 material; dispersing the material in an acetone solution, adding carbon nano-tubes, and stirring and heating the obtained solution until the solution is completely volatilized in order to obtain BaNa2Ti6O14-CNT; and carrying out mixing and ball-milling on the BaNa2Ti6O14-CNT andcarbon fibers, and sintering the obtained mixture in nitrogen to obtain the target product. The titanate negative electrode material obtained in the invention has a stable multilevel composite structure, so the titanate negative electrode material has the advantages of considerable wide potential window reversible capacity, excellent rate performances and stable cycle life.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products