Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

239 results about "Copper indium gallium selenide" patented technology

Copper indium gallium (di)selenide (CIGS) is a I-III-VI₂ semiconductor material composed of copper, indium, gallium, and selenium. The material is a solid solution of copper indium selenide (often abbreviated "CIS") and copper gallium selenide. It has a chemical formula of CuIn₍₁₋ₓ₎Ga₍ₓ₎Se₂ where the value of x can vary from 0 (pure copper indium selenide) to 1 (pure copper gallium selenide). CIGS is a tetrahedrally bonded semiconductor, with the chalcopyrite crystal structure, and a bandgap varying continuously with x from about 1.0 eV (for copper indium selenide) to about 1.7 eV (for copper gallium selenide).

Copper indium gallium selenium (CIGS) solar cell, film of absorbing layer thereof, method and equipment for preparing film

The invention provides a method for preparing a film of an absorbing layer of a copper indium gallium selenium (CIGS) solar cell, which comprises the following steps: 1, depositing a copper indium gallium (CIG) ternary metallic film, evaporating a selenium film to form a nanometer grade CIGS film structure, ensuring the temperature of a Se evaporating source is between 260 and 300 DEG C, and repeating the step for 10 to 50 times; and 2, carrying out quick annealing treatment on the superposed CIGS absorbing layer film to prepare the nanometer grade polycrystalline CIGS film. The method has the advantages that the proportion of various elements can be accurately controlled; compared with other methods for preparing the CIGS films, each element is distributed uniformly in the whole thickness range of the film with small change gradient; the whole technical process is simple and convenient, and is suitable for large-scale continuous production. Furthermore, the invention also discloses the CIGS absorbing layer film of the CIGS solar cell, the solar cell containing the CIGS absorbing layer film of the CIGS solar cell, and the manufacturing equipment used in the method.
Owner:北京华仁合创科技有限公司

Method for manufacturing sodium-doped absorbing layer on reel-to-reel flexible polyimide (PI) substrate

The invention relates to a method for manufacturing a sodium-doped absorbing layer on a reel-to-reel flexible polyimide (PI) substrate. The method is characterized by comprising the steps of 1 performing preparation before work, 2 preparing Na-doped indium gallium selenide (IGS) film, 3 preparing a copper-rich copper indium gallium selenide (CIGS) film; and 4 preparing the sodium-doped absorbing layer on the reel-to-reel flexible PI substrate. The method adopts a vacuum evaporation technology, keeps a distance between evaporation sources and the PI substrate to be 300-400mm and adjusts tape transporting speed of the PI substrate to enable the PI substrate to be lower than 450 DEG C, elements evaporated by the evaporation sources can be compounded on a back electrode Mo of the PI substrate well, and the Na-doped IGS film with even thickness is formed on the back electrode Mo. Due to the fact that Na atoms diffuse and enter the crystal boundary position of the IGS film to form a deep energy level defect, a foundation is laid for fully even Na doping into a large-area absorbing layer and strengthening of adhesion of the absorbing layer, and the effects of improving open-circuit voltage and electrical property of batteries are played.
Owner:CHINA ELECTRONIC TECH GRP CORP NO 18 RES INST

Recycling method for copper indium gallium selenide (CIGS) waste

The invention relates to a recycling method for copper indium gallium selenide (CIGS) waste. The recycling method comprises the steps that selenium in the CIGS waste is subjected to acidifying, roasting and volatilizing at first, SeO2 gas is reduced through a sodium sulfite solution, and crude selenium is obtained to achieve advance separation of the selenium, so that the problem that the selenium is always difficult to separate in the industry is solved; and then, the rest of three kinds of metal are separated, particularly, gallium-containing alkali liquor produced in the indium separation process and a gallium-containing solution obtained in the gallium separation process are combined, and electrodepositing residual liquor can be returned to the to-be-electrodeposited gallium-containing solution to be subjected to circulatory electrodepositing, so that efficient and circulatory recycling of gallium is achieved. According to the recycling scheme of the recycling method for the CIGS waste, the comprehensive recycling rate of the various materials is much higher than the existing level in the same industry; in addition, production wastewater zero discharge can be achieved in the whole recycling process, and the environment-friendly degree is high; and moreover, the whole recycling process is easy to operate, high in safety and reliability, low in cost and capable of achieving large-scale production easily and has broad application prospects.
Owner:HANERGY MOBILE ENERGY HLDG GRP CO LTD

Method for preparing CIGS (copper indium gallium selenide) film through selenylation at low temperature

ActiveCN103334081ALow selenization temperatureLow toxic safetyFinal product manufactureVacuum evaporation coatingCopper indium gallium selenideSolvent
The invention discloses a method for preparing a CIGS (copper indium gallium selenide) film through selenylation at low temperature. The method comprises the following steps of carrying out a reaction on a copper resource, an indium resource, a gallium resource and a selenium resource as well as alkylamine so as to obtain CIGS nanocrystalline, mixing the CIGS nanocrystalline with a solvent so as to obtain CIGS nanocrystalline ink, coating so as to obtain a coating substrate, then carrying out steam inducing low temperature selenylation: putting the coating substrate and an organic selenium alcoholic solution independently in a closed environment, heating to 100-400 DEG C, carrying out a selenylation reaction through full contact of the steam generated by the organic selenium alcoholic solution and the coating substrate, and obtaining the CIGS film. By adopting steam inducing selenylation, the method has the advantages of good selenylation effect, low toxicity and safety as well as lower selenylation temperature, and is convenient to coat the film on a low temperature enduring flexible substrate. The photoelectric conversion efficiency can be improved when obtained CIGS films are used for preparing solar energy batteries.
Owner:徐东

Method for preparing copper indium gallium selenide solar cell optical absorption layer

The invention relates to the preparation technology of film solar cell, in particular to a preparation method for a copper indium gallium selenide optical absorption layer. The preparation method comprises the steps of (1) uniformly mixing, stirring and ball-milling selenide of metal copper, indium and gallium or metal copper, indium and gallium and selenium simple substance in stoichiometric ratio, and obtaining copper indium gallium selenide nano particles, of which the particle diameter is 10-10,000nm, wherein the atom molar ratio of Cu: In: Ga: Se is (0.9-1):(0-1): (0-1):2; (2) dispersing the copper indium gallium selenide nano particles in a mixing solution formed by dispersant and film-forming agent; stirring or grinding or magnetically stirring and dispersing the particles so as to obtain CIGS (Copper Indium Gallium Selenide) precursor slurry; (3) coating a substrate with the precursor film, drying the precursor film in the air atmosphere to remove the dispersant and the film-forming agent; and obtaining precursor film; and (4) quickly warming and thermally treating the precursor film in the insert atmosphere to obtain copper indium gallium selenide solar cell optical absorption layer film finished product. The method provided by the invention simplifies the process flow, has high production efficiency and is helpful for environment friendliness and; and the method broadens the idea for large-scale industrialization of CIGS film solar cell.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Alkali metal doping method for preparing CIGS absorbing layer on flexible substrate

The invention relates to an alkali metal doping method for preparing a CIGS absorbing layer on a flexible substrate, and belongs to the technical field of copper indium gallium selenide (CIGS) thin film solar cells. The alkali metal doping method comprises that a CIGS absorbing layer is deposited by using a co-evaporation process; and with the increase of Cu content in the absorbing layer, the thin film growth experiences a copper-poor to copper-rich process, in the copper-rich process, when Cu(In+Ga)>1 in a CIGS thin film, the evaporation of the Cu element is stopped so that the slightly copper-rich CIGS thin film can finally become copper-poor, then the In and Ga atoms are evaporated until the deposition thickness is 1/10-3/10 of the thickness of the absorbing layer, in this process, an alkali metal compound is co-evaporated, the doping amount is 0.08-0.12% of the atomic ratio with respect to the CIGS thin film, the temperature of the substrate is reduced to the room temperature, and the CIGS thin film having a thickness of 1-3 <mu>m is obtained. The invention has the advantages of having a simplified process, a high production efficiency and thin film crystal high-quality, increasing the carrier concentration of the absorbing layer, lowering the resistivity, improving the electrical properties of the thin film cell, thus improving the photoelectric conversion efficiency of the CIGS thin film solar cell and the like.
Owner:CHINA ELECTRONIC TECH GRP CORP NO 18 RES INST

Method for electrodepositing copper indium diselenide or copper indium gallium selenide film by special pulsing power source

The invention particularly discloses a method for electrodepositing a copper indium diselenide or copper indium gallium selenide film by a special pulsing power source. The method comprises the following steps: in electrolytic solution containing copper, indium, selenium ions or copper, indium, gallium and selenium ions, a preformed film is prepared through electrodepositing on a cathode substrate by adopting bell-shaped wave adjusted square-wave pulse; and then, the preformed film is annealed under vacuum, nitrogen or argon having a solid selenide source to generate the copper indium diselenide or copper indium gallium selenide film finally, wherein, parameters of pulse electrodepositing are as follows: pulse frequency is between 26 and 400kHz, duty factor is between 1 and 100 percent; the mode of electrodepositing is pulse constant potential or pulse constant current, the range of the pulse potential is between 0.5 and 4V, the range of the pulse current is between 0.5 and 3mA, and the deposit time is between 10 and 120min. The method has high frequency and high strength of burst pulse polarization; the method leads ions requiring depositing to perform resonance through adjusting frequency in large scale to effectively deposit the ions; and the method can less deposit current, and realize deposit of elements with more negative potential of a standard electrode without adverse phenomena of liberation of hydrogen.
Owner:HENAN UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products