Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

53 results about "Molybdenum telluride" patented technology

Molybdenum(IV) telluride, molybdenum ditelluride or just molybdenum telluride is a compound of molybdenum and tellurium with formula MoTe₂, corresponding to a mass percentage of 27.32% molybdenum and 72.68% tellurium. It can crystallise in two dimensional sheets which can be thinned down to monolayers that are flexible and almost transparent. It is a semiconductor, and can fluoresce. It is part of a class of materials called transition metal dichalcogenides. As a semiconductor the band gap lies in the infrared region. This raises the potential use as a semiconductor in electronics or an infrared detector.

Asymmetric van der Waals heterojunction device, preparation method and use thereof

The invention provides an asymmetric van der Waals heterojunction device, comprising graphene nanosheets, hexagonal boron nitride nanosheets, molybdenum disulfide nanosheets and molybdenum telluride nanosheets sequentially arranged from bottom to top; The graphene nano sheet and the hexagonal boron nitride nano sheet, the molybdenum disulfide nano sheet and the molybdenum telluride nano sheet havean overlapping region; A surface area of that molybdenum disulfide nanosheet is lar than that of the molybdenum telluride nanosheet, and parts of the molybdenum disulfide nanosheet do not overlap with the molybdenum telluride nanosheet. The invention also provides the preparation and application of the asymmetric van der Waals heterojunction device. The asymmetric van der Waals heterojunction device of the invention can realize the organic unity of ultra high performance and multiple functions. When operating as a transistor, the device exhibits ultra-high current switching ratio, ultra-smallsubthreshold swing and obvious negative transconductance behavior. When operating as a rectifier, the device exhibits an ultra-high current rectification ratio. When operating as memory, the device exhibits an ultra-high erase/write current ratio and current rectification ratio.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

Method for large-area preparation of two-dimensional molybdenum telluride in-plane heterojunction with contact of metal phase and semiconductor phase and application thereof

The invention discloses a method for large-area preparation of two-dimensional molybdenum telluride in-plane heterojunction with contact of a metal phase and a semiconductor phase and application thereof. The method comprises the steps of: growing a two-dimensional molybdenum thin film on a substrate, employing a chemical vapor deposition method to convert the two-dimensional molybdenum thin filmto a semiconductor phase molybdenum telluride thin film, performing photolithography and etching imaging of the semiconductor phase molybdenum telluride thin film, growing a molybdenum thin film, performing peeling to obtain a thin film with spaced apart metal phases and semiconductor phase molybdenum telluride, and further employing the chemical vapor deposition method to convert the metal molybdenum thin film to a metal phase molybdenum telluride thin film to obtain a two-dimensional molybdenum telluride in-plane heterojunction with contact of the metal phase and the semiconductor phase. Thefield effect transistor array of the two-dimensional molybdenum telluride in-plane heterojunction with contact of the metal phase and the semiconductor phase is low in contact resistance, improves the injection efficiency of the carrier, and improves the electrical properties of the device. The method provides basis for application of the two-dimensional semiconductor materials at the aspects ofintegration circuits and flexible devices.
Owner:PEKING UNIV

Optical detector based on second-class Weyl semimetal molybdenum ditelluride and detection method of optical detector

The invention discloses an optical detector based on second-class Weyl semimetal molybdenum ditelluride and a detection method of the optical detector. According to the optical detector, a molybdenumditelluride nanosheet is adopted to serve as a light detection material, wherein the molybdenum ditelluride nanosheet is a zero-gap material and is wide in detection spectrum range, bias voltage doesnot need to be added and cannot be added, and the material has sensitive responsivity under room temperature; the detector is sensitive to a polarized light direction and can be used for polarizationdetection; the detector can be applied to the fields of infrared imaging, military reconnaissance, night vision goggles, etc. and has broad application prospects in terms of military equipment; besides, it is needed to be specially pointed out that the optical detector based on the material can make a rather high light current response without the need for providing bias voltage, and the dark current is quite low; and moreover, the bias voltage cannot be added to the optical detector, or otherwise a background current can be generated, it is not needed to provide a low-temperature environmentfor the optical detector based on the material, and therefore miniaturization and economy of the detector are benefited a lot.
Owner:PEKING UNIV

Molybdenum telluride positive electrode material for lithium-ion battery and preparation method of molybdenum telluride positive electrode material

The invention provides a molybdenum telluride positive electrode material for a lithium-ion battery. The molybdenum telluride positive electrode material comprises 1T'-type molybdenum ditelluride crystal and a conductive material coating the outer surface of the 1T'-type molybdenum ditelluride crystal, and the mass percent of the conductive material in the molybdenum telluride positive electrode material is 5-15%. If the mass percent of the conductive material in the molybdenum telluride positive electrode material is smaller than 5%, reunion of the 1T'-type molybdenum ditelluride crystal is caused; if the mass percent of the conductive material in the molybdenum telluride positive electrode material is greater than 15%, the 1T'-type molybdenum ditelluride crystal cannot fully develop excellent electrochemical properties; and the conductive material coats the 1T'-type molybdenum ditelluride crystal and the mass percent of the conductive material in the molybdenum telluride positive electrode material is 5-15%, so that the molybdenum telluride positive electrode material for the lithium-ion battery has excellent rate capability and good cycle performance. The invention further provides a preparation method of the molybdenum telluride positive electrode material for the lithium-ion battery. The preparation method is simple in process, environment-friendly and efficient.
Owner:YANGTZE UNIVERSITY

Two-dimensional molybdenum ditelluride vertical heterojunction and preparation method and application thereof

The invention belongs to the field of two-dimensional materials, and particularly discloses a two-dimensional molybdenum ditelluride vertical heterojunction and a preparation method and application thereof. The two-dimensional molybdenum ditelluride vertical heterojunction comprises a 1T'-MoTe<2> part and a 2H-MoTe<2> part, and the two parts are connected through interlayer Van der Waals' force; the preparation method comprises the following steps: S1, drying a mixed solution of ammonium tetramolybdate and sodium chloride, putting the dried mixed solution as a molybdenum source into a reactor,putting a growth substrate on the molybdenum source, putting tellurium powder as a tellurium source into the reactor, and putting the tellurium powder at the upstream of the molybdenum source; and S2, raising the temperature of the molybdenum source and the tellurium source to a reaction temperature, naturally cooling to room temperature, introducing carrier gas into the reactor to bring the tellurium source to the molybdenum source, introducing a reducing agent, and generating the two-dimensional molybdenum ditelluride vertical heterojunction on the growth substrate. The metal phase and semiconductor phase vertically stacked MoTe2 heterostructure prepared by the invention can effectively reduce the Schottky barrier of contact between a metal electrode and a material, and an important thought for improving metal-semiconductor contact is provided.
Owner:HUAZHONG UNIV OF SCI & TECH

Gallium oxide-two-dimensional P-type Van der Waals tunneling transistor, dual-band photoelectric detector and preparation method

The invention particularly relates to a gallium oxide-two-dimensional P-type Van der Waals tunneling transistor, a dual-band photoelectric detector and a preparation method, and solves the technical problem that PN junction deep ultraviolet-infrared dual-band detection of the tunneling transistor and gate voltage modulation cannot be realized simultaneously due to lack of P-type doping of Ga2O3 in preparation of an existing UWBG material transistor/photoelectric detector. The transistor and the photoelectric detector comprise a back gate electrode, a dielectric oxide layer, a gallium oxide layer, a gallium oxide electrode forming ohmic contact, a P-type two-dimensional material layer, a P-type two-dimensional material electrode forming ohmic contact, and a dielectric passivation layer. The gallium oxide layer and the P-type two-dimensional material layer are partially overlapped to form a heterojunction; the gallium oxide layer is an unintentionally doped or doped Ga2O3 quasi-two-dimensional crystal film; and the P-type two-dimensional material layer is black phosphorus or a beta-phase tellurium elementary substance or a 2H-phase molybdenum ditelluride or tungsten diselenide or platinum diselenide film. In addition, the invention also provides a preparation method of the transistor and the dual-band photoelectric detector.
Owner:XIAN UNIV OF POSTS & TELECOMM

Confinement chemical vapor deposition preparation method of two-dimensional molybdenum ditelluride nano material

ActiveCN113428845AAvoid Spatial InhomogeneityLarge compositing windowNanotechnologyMetal selenides/telluridesMicron scaleSodium molybdate
The invention generally relates to the technical field of two-dimensional material preparation, and provides a confinement chemical vapor deposition preparation method of a two-dimensional molybdenum ditelluride (MoTe2) nano material, which comprises the following steps of: (1) preparing two substrates, and marking the substrates as a substrate A and a substrate B; and carrying out plasma surface treatment on the polished surface of the substrate A; (2) coating the surface of the treated substrate A with a sodium molybdate solution to form a sodium molybdate coating; (3) constructing a confinement growth environment: overlapping the sodium molybdate coating surface of the substrate A and the polished surface of the substrate B in a face-to-face manner, with the substrate B being on the top, to form a laminated substrate with a micron-order slit (1-30 microns); (4) enabling the tellurium powder to be firstly heated into tellurium steam through arrangement of the placement position, and then enabling the tellurium steam and a molybdenum source, rapidly introduced into the heating area, in the laminated substrate to react in a confinement and grow; and (5) sampling: after a quartz tube is cooled to room temperature, taking out the laminated substrate, and obtaining two-dimensional MoTe2 on the surface of the substrate B.
Owner:NAT UNIV OF DEFENSE TECH

Method for preparing large-area high-performance n-type two-dimensional molybdenum telluride field effect transistor array

The invention discloses a method for preparing a large-area high-performance n-type two-dimensional molybdenum telluride field effect transistor array. The method comprises the following steps: growing a semiconductor phase molybdenum telluride thin film on a substrate, patterning the semiconductor phase molybdenum telluride thin film and growing a tungsten thin film to obtain a thin film in which metal tungsten and semiconductor phase molybdenum telluride are alternated, and changing the tungsten thin film into a semimetal phase tungsten telluride thin film through a chemical vapor deposition method; patterning again to obtain a discrete device array which takes semiconductor phase molybdenum telluride as a channel and semi-metal phase tungsten telluride as an electrode; and finally, performing n-type doping on the device through atomic layer deposition of a hafnium oxide thin film, and preparing a patterned top gate metal electrode to obtain a large-area high-performance n-type two-dimensional molybdenum telluride field effect transistor array. According to the method, the n-type doping effect on the two-dimensional molybdenum telluride is ideal, the doping degree is adjustable, meanwhile, the contact resistance of the source electrode and the drain electrode of the prepared device is low, the performance of the device is improved, and a foundation is provided for application of two-dimensional semiconductor materials in the field of integrated circuits and the like.
Owner:PEKING UNIV

Method for preparing molybdenum ditelluride nanotubes

The invention discloses a method for preparing molybdenum ditelluride nanotubes. The method comprises the following steps: 1) laying molybdenum hexacarbonyl to the bottom of a ceramic crucible, layinga porous anodic aluminum oxide mold plate with an opening facing downwards on the molybdenum hexacarbonyl, sealing the ceramic crucible, putting into a tubular furnace, performing low-temperature sublimation deposition in the presence of a gas, and continuously performing heating pyrolysis; 2) cooling the vacuum tubular furnace to the room temperature, putting the mold plate with the opening facing downwards into a ceramic crucible with tellurium powder, sealing the ceramic crucible, heating in the presence of the gas, and enabling a single substance, namely tellurium, to react with a metal,namely molybdenum, directly; 3) removing the excessive aluminum oxide mold plate and excessive tellurium by using a diluted acid solution, performing suction filtration treatment, and drying, therebyobtaining a finished product. The method disclosed by the invention is simple in step, free of environment pollution and free of complex equipment, a molybdenum ditelluride nanotube powder material prepared by using the method is good in size controllability, good in crystallinity and uniform in nanotube wall and morphology, and thus the comprehensive properties of a finished product of the molybdenum ditelluride nanotube powder material are greatly improved. The method is wide in applicability and beneficial to large-scale industrial production.
Owner:FOSHAN UNIVERSITY

Heterogeneous integration method for monocrystalline two-dimensional semiconductor molybdenum telluride film and arbitrary lattice mismatched monocrystalline substrate

The invention discloses a method for heterogeneous integration of a monocrystal two-dimensional semiconductor molybdenum telluride film and an arbitrary lattice mismatched monocrystal substrate. According to the method, the necessary condition, namely lattice matching, of heterogeneous integration of different types of single crystal materials in the traditional epitaxial process is broken through, and the 2H-MoTe2 prepared by utilizing the chemical vapor deposition method has a special growth mechanism of transverse epitaxial phase change; the monocrystal two-dimensional semiconductor molybdenum telluride film can be directly grown and integrated with any monocrystal substrate by controlling the temperature and the time without being limited by lattice matching. According to the obtained heterogeneous integrated structure, the semiconductor characteristic of molybdenum telluride and the physical characteristic of the substrate can be utilized at the same time, the performance of the device is improved, and the functionalization of the device is enhanced. Moreover, the method is suitable for large-area preparation, the preparation of an integrated photoelectric device array can be realized, a basis is provided for realizing wafer-level and industrial chip manufacturing, and a basis is provided for the application of a two-dimensional semiconductor material in the aspects of integrated circuits and photoelectric chips.
Owner:PEKING UNIV

Uniform and high-strain two-dimensional molybdenum disulfide material and preparation method thereof

The invention belongs to the field of two-dimensional material preparation, and specifically discloses a uniform and high-strain two-dimensional molybdenum disulfide material and a preparation methodthereof. The preparation method comprises the following steps: taking two-dimensional molybdenum ditelluride as a precursor at the reaction temperature of 600 DEG C or above, and performing controllable tellurium element and sulfur element replacement between the precursor and hydrogen sulfide so as to obtain uniform and high-strain two-dimensional molybdenum disulfide and finish the preparation of the two-dimensional molybdenum disulfide material. An element replacement method is adopted, two-dimensional molybdenum ditelluride is converted into two-dimensional molybdenum disulfide while the two-dimensional molybdenum disulfide is kept in a high-strain state, so the method is simple and high in controllability, large-scale preparation can be achieved, and the generated strain is uniform and adjustable in a large range; and the obtained two-dimensional molybdenum disulfide material has a huge application prospect in the fields of novel photoelectronic devices and catalysis, and the physical and chemical properties of the two-dimensional molybdenum disulfide material can be adjusted to a great extent by applying strain energy.
Owner:HUAZHONG UNIV OF SCI & TECH

Photoelectric detector based on rhenium diselenide and molybdenum telluride heterojunction and preparation method thereof

PendingCN114759113AImprove photoelectric performanceSolve the problem of limited light absorption rangeSemiconductor devicesHeterojunctionRhenium
The invention discloses a rhenium diselenide and molybdenum ditelluride heterojunction-based photoelectric detector and a preparation method thereof, the photoelectric detector comprises a SiO2/Si substrate, a rhenium diselenide nanosheet, a molybdenum ditelluride nanosheet and a metal electrode, the rhenium diselenide nanosheet and the molybdenum ditelluride nanosheet are arranged on the surface of the SiO2/Si substrate, and the metal electrode is arranged on the surface of the rhenium diselenide nanosheet and the molybdenum ditelluride nanosheet. The surface of the rhenium diselenide nanosheet and the surface of the molybdenum ditelluride nanosheet are partially overlapped to form a rhenium diselenide and molybdenum ditelluride heterojunction, and light current is generated when the heterojunction is illuminated, so that optical detection is realized, type-II type staggered energy band arrangement is met, interlayer transition excitation can be realized, and the detection sensitivity is improved. The rhenium diselenide photoelectric detector effectively solves the problem that the light absorption range of a single rhenium diselenide photoelectric detector is limited, so that the photoelectric property of the photoelectric detector is improved, wide-spectrum photoelectric detection from visible light to a short-wave infrared region can be realized, and the light response range is wider.
Owner:TAISHAN UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products