Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

327 results about "Hexagonal phase" patented technology

A hexagonal phase of lyotropic liquid crystal is formed by some amphiphilic molecules when they are mixed with water or another polar solvent. In this phase, the amphiphile molecules are aggregated into cylindrical structures of indefinite length and these cylindrical aggregates are disposed on a hexagonal lattice, giving the phase long-range orientational order.

Fluorescent salix mongolica regenerated cellulose fibers and preparation method thereof

The invention discloses fluorescent salix mongolica regenerated cellulose fibers and a preparation method thereof. The preparation method comprises the following steps: peeling off salix mongolica, crushing, sieving, drying and cooling to prepare salix mongolica wood powder; extracting salix mongolica cellulose by adopting an ethanol-acid mixed solution; treating the salix mongolica cellulose by processes of steaming, bleaching and the like to prepare salix mongolica pulp; filtering, decompressing and de-foaming water-soluble up-conversion nano particles and the salix mongolica cellulose to obtain a spinning solution which is uniformly mixed; and spinning the spinning solution by a condensation bath, drafting and molding, refining and drying to obtain the fluorescent salix mongolica regenerated cellulose fibers. A preparation process of the water-soluble up-conversion nano particles comprises the following steps: firstly, synthesizing hexagonal-phase up-conversion luminous nano particles UCNPs by adopting a high-temperature thermal decomposition method; treating the UCNPs with nitrosonium tetrafluoroborate NOBF4, and replacing oleic acid molecules on the surface; finally, reacting with a hydrophilic hyperbranched polymer to obtain the water-soluble up-conversion nano particles. According to the fluorescent salix mongolica regenerated cellulose fibers, the water-soluble up-conversion nano particles and the salix mongolica regenerated cellulose are used as raw materials and are subjected to efficient blending and wet-process spinning to prepare the regenerated cellulose fibers with the excellent fluorescent performance.
Owner:WUJIANG JINGMEIFENG IND

Sintered polycrystalline yttrium aluminum garnet and use thereof in optical devices

A transparent yttrium aluminum garnet precursor composition is provided that includes a plurality of calcined particles of yttrium aluminum oxide having a mean particle domain size of between 10 and 200 nanometers and a predominant hexagonal crystal structure. High levels of YAG transparency are obtained for large YAG articles through control of the aluminum:yttrium atomic ratio to 1:06±0.001 and limiting impurity loadings to less than 100 ppm. The composition is calcined at a temperature between 700° Celsius and 900° Celsius to remove organic additives to yield a predominant metastable hexagonal phase yttrium aluminum oxide nanoparticulate having an atomic ratio of aluminum: yttrium of 1:0.6±0.001. With dispersion in an organic binder and a translucent YAG article is formed having a transmittance at a wavelength of 1064 nanometers of greater than 75%. The translucent YAG article is characterized by an average domain size of less than 1 micron and having a density of at least 99% and inclusions present at less than 2 surface area percent. The ability of a batch of yttrium aluminum oxide nanoparticles to serve as a transparent YAG precursor includes collecting an X-ray fluorescence spectrum from a plurality of aluminum oxide nanoparticles having a predominant crystal structure other than garnet to yield an A1:Y raw integrated peak intensity ratio. The nanoparticles are sintered to yield a predominant garnet phase and a secondary phase and optionally isostatic pressing during sintering. By using only precursor nanoparticles with a standard deviation of ±0.003 in the peak ratio exceptionally high transparency YAG is reproducibly produced.
Owner:NANOCEROX

Preparation method of small-sized NaYF4 nano substrate material with hexagonal phase by inducement

The invention belongs to the technical field of a nano up-conversion luminescent material, in particular relates to a preparation method for a small-sized NaYF4 nano substrate material with a hexagonal phase by inducement with rare earth nano crystal nucleus. In the method, rare earth ions are doped in the NaYF4 nano substrate material so as to obtain a nano material with a low up-conversion luminescence threshold and high luminescence strength. In the method, the small-sized beta-NaYF4 nano substrate material is generated by inducement with a hydrothermal (solvent) process in the presence ofrare earth fluoride nano crystal nucleus, wherein the size of the particle is from 20nm to 200nm, and distribution of the size is even. According to the invention, a preparation method of the small-sized NaYF4 nano substrate material with the hexagonal phase is expanded, and the problem that the NaYF4 nano substrate material, especially water-soluble NaYF4 nano substrate material is difficultly generated at low temperature, is solved. By using the nano up-conversion luminescent material, the demand on biological fluorescent identification probes and disease diagnosis and treatment materials is met, and a foundation is established for the practicable application of the up-conversion luminescent material.
Owner:JILIN UNIV

Water soluble NaYF4@NaGdF4 nanocrystalline with upconversion core-shell structure and preparation method thereof

InactiveCN103173222AIncreased upconversion luminescenceIncrease the fluorescence lifetime quenching timeLuminescent compositionsSolubilityUpconversion luminescence
The invention relates to a water soluble NaYF4@NaGdF4 nanocrystalline with an upconversion core-shell structure and a preparation method thereof, and belongs to the technical field of microwave polyhydric alcohol chemical method synthesis. The nanocrystalline with the upconversion core-shell structure provided by the invention, is regulatable balls with different sizes in addition amount of an outer polytetrafluorogadolinium sodium shell, and the average diameter is 14-38 nanometers. The physical phase is converted from square phase to hexagonal phase. According to the nanocrystalline with the core-shell structure provided by the invention, polyethyleneimine covers the surface of the polytetrafluorogadolinium sodium nanocrystalline, so that the particles have good water solubility, and the shape of products can be controlled, and the nanocrystalline has good biological compatibility. Along with increase of the shell layer, upconversion luminescence is increased, and the fluorescent lifetime cancellation time is prolonged. The nanocrystalline can be used as an effective CT (Computed Tomography) responder and has potential application value in the fields such as biological imaging. The nanocrystalline with the core-shell structure has higher fluorescence efficiency and better water solubility and biological application value.
Owner:JILIN UNIV

Preparation method of NaY(98-X)% F4:X%Yb, 2%Er@NaDyF4 in core-shell structure

The invention provides a preparation method of NaY(98-X)% F4:X%Yb, 2%Er@NaDyF4 in a core-shell structure and relates to a preparation method of up-conversion reflecting material. The invention solves the technical problems that luminescent center of the existing magnetic fluorescent material can be easily influenced by a high-energy group and the up-conversion luminescent efficiency and luminescent intensity are reduced. The preparation method provided by the invention comprises the following steps of: adding DyCl3.6H2O into a mixture of oleic acid and octadecene, heating up to 160 DEG C to form uniform light yellow solution, cooling, adding normal hexane solution, stirring, then heating up, insulating, cooling, adding absolute methanol solution of NH4F and NaOH, standing still, heating and insulating in an argon atmosphere, and then heating up and insulating, cooling, washing, and centrifuging, thus obtaining the NaY(98-X)% F4:X%Yb, 2%Er@NaDyF4 in the core-shell structure. The NaY(98-X)% F4:X%Yb, 2%Er@NaDyF4 in the core-shell structure is of a hexagonal phase structure, the luminescent center of the NaY(98-X)% F4:X%Yb, 2%Er@NaDyF4 in the core-shell structure is not influenced by the high-energy group, and up-conversion luminescent efficiency is improved, so that the luminescent intensity is greatly improved.
Owner:HARBIN INST OF TECH

In-water-phase monodisperse sodium yttrium tetrafluoride multi-color luminescent nanoparticle and preparation method thereof

The invention discloses an in-water-phase monodisperse sodium yttrium tetrafluoride ytterbium-and-erbium-doped multi-color upconversion luminescent nanoparticle and a preparation method thereof, belonging to the field of multifunctional application-oriented inorganic advanced nano materials. According to the method, a product is synthesized in one step through a hydrothermal method, and a sodium yttrium tetrafluoride nanoparticle capable of emitting light of different colors can be obtained by regulating the amount of NaF; and the particle which is uniform in size and is in morphology of cubic phases or hexagonal phases can be obtained through simple condition change. The sodium yttrium tetrafluoride multi-color luminescent nanoparticle can stably exist in water for long time, has excellent biocompatibility and can be directly used in hydrophilic systems of biosensors, cell imaging, magnetic resonance imaging, disease diagnosis and treatment and the like. The cost of raw materials is low, less pollution is caused to the environment, and the method is simple, so that the sodium yttrium tetrafluoride multi-color luminescent nanoparticle has wide application prospects in the field of biology and the fields such as thin-film materials, luminescent devices, anti-counterfeiting materials and the like. It is worth mentioning that the material has been successfully used in the field of cell imaging.
Owner:BEIJING UNIV OF CHEM TECH

Novel surface plasma enhanced high-efficiency photocatalytic water splitting composite catalyst

ActiveCN104437549AImproving the efficiency of photo-splitting water to produce hydrogenIncrease profitPhysical/chemical process catalystsHydrogen productionSolubilityPhotocatalytic water splitting
The invention relates to preparation and high-efficiency hydrogen production of a novel surface plasma enhanced high-efficiency photocatalytic water splitting composite catalyst Au/CdX (X refers to S, Se and the like). The Au/Cd core-shell structure nanocrystalline consists of Au particles serving as a core and a CdX semiconductor serving as a shell layer, wherein the size of the Au particles is 20-45nm; the CdX shell layer is a single crystalline layer of 2-12nm; and the crystal form is a hexagonal phase of wurtzite. The preparation method comprises the following steps: adding a precursor into hydrosol of the Au/Ag nanoparticles to be converted into Au/AgX; adding a cadmium salt and a phosphine ligand, reacting at the temperature of 50 to 80 DEG C to generate the Au/CdX catalyst. The photocatalytic water splitting hydrogen production efficiency of the catalyst is 20-30mol/g/h and is higher than that of pure CdS quantum dots of the same mass by over 1000 times. The water solubility is high, the inverted phase is not needed during the test, the operating device is simplified, and the time is shortened. Meanwhile, the material utilization rate is improved, the synthesis condition is mild, and the catalyst is environmentally friendly, feasible and low in cost and has wide application prospects in the field of photocatalysis.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products