Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

188 results about "Cesium iodide" patented technology

Caesium iodide or cesium iodide (chemical formula CsI) is the ionic compound of caesium and iodine. It is often used as the input phosphor of an X-ray image intensifier tube found in fluoroscopy equipment. Caesium iodide photocathodes are highly efficient at extreme ultraviolet wavelengths.

Non-destructive testing systems and method used for detecting a metal-containing object through X-ray detection

The invention discloses a non-destructive testing systems and a non-destructive testing method used for detecting a metal-rope-containing detection target through X-ray detection. The system comprises: an ultrahigh-voltage generator, an X-ray generator, a cesium iodide sensor, an optical fiber module, a controlling module, a computer, and a power supply module. The method comprises the steps that: one-dimensional energy variation data is recorded; a two-dimensional image is spliced; the image is transferred into a GPU; dark current is eliminated; gain adjustment is carried out; metal region segmentation is carried out; defect detection is carried out; the result is transferred to a computer internal memory; feature extraction is carried out; mode recognition is carried out; and the result is outputted. According to the invention, through X-ray processing, GPU calculating, and image processing algorithms, defects such as low detection precision, long feedback cycle, offline spot-check, low efficiency, and the like of other methods are solved. The system and the method provided by the invention can satisfy requirements of various terminal users such as belt manufacturers, mines, ports, power plants, steel plants, cement plants, and the like.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Well logger of natural ganmma energy specntrum

The present invention relates to a logging unit which can be used for measuring radioactive gamma energy spectrum naturally-existed in the borehole. Its technical scheme includes probe portion, mechanical structure portion and circuit portion, in which the mechanical structure portion mainly includes upper connector, external shell, power supply skeleton, circuit skeleton, scale mark and lower connector. The circuit portion mainly includes power supply plate, main control plate and PHA plate, the power supply plate is mounted on the aluminum alloy skeleton, and the main component of the probe portion includes a cesium iodide crystal, an optically-coupled piece and a photomultiplier, on the pins of photomultiplier are welded a voltage-dividing resistor and a filter capacitor, the described component is packaged in an aluminum metal cylinder, and the upper end of the probe is equipped with three lead-out wires which respectively are high-voltage power supply wire, signal output wire and grounding wire. The circuit composition of main control plate and PHA plate includes energy spectrum preamplifier circuit, energy spectrum communication interface, energy spectrum measurement and control circuit, pulse height analysis circuit and M5 data remote transmission control circuit. Besides, said invention also provides the concrete application field and range.
Owner:中国石化集团胜利石油管理局测井公司

X-ray camera and manufacturing method thereof

The invention discloses an X-ray camera and a manufacturing method thereof. The X-ray camera is manufactured by coupling a fiber optic taper with a CCD (Charge Coupled Device) or CMOS (Complementary Metal-Oxide-Semiconductor) camera, wherein a needle-like CsI (Cesium Iodide) crystal, a moisture sealer and an aluminium coating or a silicon nitride film are arranged on a big end of the fiber optic taper in order; the fiber optic taper is manufactured by the steps of: sleeving a low-refractive-index cladding on a high-refractive-index core material of an ordinary fiber optic taper, on the basis, sleeving a black glass or lead silicate glass sleeve matching with the fiber optic taper in thermophysical properties, manufacturing a fiber array cylinder according to a front-end process of manufacturing a fiber optic panel, and then drawing the cylinder according to the proportion between the big end and a small end of the fiber optic taper, wherein the fiber optic taper made of the lead silicate glass sleeve requires hydrogen reduction treatment; and after the needle-like CsI crystal, the moisture sealer and the aluminium coating or silicon nitride film are manufactured in order on the big end of the fiber optic taper, the small end of the fiber optic taper is coupled with a light-sensitive surface of the camera by using optical cement. The X-ray camera manufactured in such a way has the minimum pixel reaching 5 micrometers and the resolution ratio being above 301p/mm with good MTF (Modulation Transfer Function).
Owner:INST OF HIGH ENERGY PHYSICS CHINESE ACADEMY OF SCI

A preparation method of inorganic perovskite thin film and application in solar cell

The invention relates to a preparation method of an inorganic perovskite thin film and an application in a solar cell, belonging to the technical field of solar cells. Excess cesium iodide is added asan additive to an inorganic perovskite solutio to deposite a high-quality inorganic perovskite film, the obtained thin film is used as light absorbing layer in the solar cell. The method can obtain the inorganic perovskite thin film with low porosity, uniform and compact, and greatly reduce the annealing temperature of the thin film and greatly reduce the energy consumption. The photovoltaic performance of inorganic halide perovskite solar cells can be greatly improved by applying the device to perovskite solar cells, and the prepared device has excellent environmental stability and repeatability, and is suitable for large-scale industrial production. As that technological condition such as the addition amount of the cesium iodide additive, the thickness of the active layer, the anneal temperature and the like are optimized, the invention is applied to a carbon-based all-inorganic perovskite solar cell, the photoelectric conversion efficiency can exceed 10%, and the photoelectric conversion efficiency has good stability.
Owner:BEIJING UNIV OF CHEM TECH

Bridgman method growth process of cesium iodide and thallium-doped cesium iodide monocrystalline

The present invention provides a bridgman method growth process of pure cesium iodide and thallium-doped cesium iodide monocrystalline. The bridgman method growth process comprises the following steps: firstly performing hydroxyl and drying pretreatment for eliminating OH-, absorbed water and crystal water wherein; after drying, filling the raw material in a quartz crucible which is coated by a carbon film, and performing vacuum-pumping sealing; and realizing crystal growth in a descending furnace which is internally provided with a high-temperature area, a medium-temperature area and a low-temperature area, wherein a descending speed is 1.5-3.0mm / h and a temperature gradient of a crystal growth interface is 30+ / -2 DEG C / cm. The bridgman method growth process of the pure cesium iodide and thallium-doped cesium iodide monocrystalline has the following characteristics: simple structure of a growth furnace which is used therein, high convenience in operation, adjustable gradient of the temperature in the hearth, capability of growing a plurality of pieces of crystal at a plurality of equivalent stations in the furnace, reduced crystal cost, high suitability for large-scale production, etc. The cesium iodide crystal which is grown according to the invention is suitable for the application fields such as safety inspection and nuclear medicine imaging.
Owner:上海御光新材料科技股份有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products