Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

39results about How to "Alleviate chalking problems" patented technology

Flexible negative electrode with MnO2 attached onto carbon fiber of lithium ion battery and preparation method of flexible negative electrode

InactiveCN105552342ALithium extraction and extraction potential is lowImprove cycle performanceCell electrodesSecondary cellsFiberCarbon fibers
The invention relates to a flexible negative electrode with MnO2 attached onto carbon fibers of a lithium ion battery and a preparation method of the flexible negative electrode. A metal oxide in the prior art is wrapped inside the carbon nanofibers, and thus, the contact of the metal oxide serving as an active substance with an electrode and the de-intercalation process of the metal oxide with lithium ions are not promoted; and further, the metal oxide is Fe2O3, Fe3O4, Co3O4 and the like, and such metal oxide has a defect of relatively high de-intercalation lithium potential. The preparation method is characterized by comprising the following steps of firstly, preparing a flexible carbon nanofiber net, which comprises electrostatic spinning, pre-oxidation of a polymer nanofiber net and high-temperature calcination; secondly, preparing a flexible composite fiber thin film with an MnO2 nanowire attached onto the surfaces of the carbon nanofibers, placing the flexible carbon nanofiber net in a KMnO4 solution, and completing high-temperature reaction under process conditions of a reaction temperature of 150-200 DEG C and reaction time of 30-60 minutes; and finally, cutting the flexible carbon nanofiber net into the flexible negative electrode with MnO2 attached onto the carbon fibers of the lithium ion battery.
Owner:CHANGCHUN UNIV OF SCI & TECH

Graphene-coated copper oxide composite cathode material and method for manufacturing same

The invention discloses a graphene-coated copper oxide composite cathode material and a method for manufacturing the same. The graphene-coated copper oxide composite cathode material comprises, by mass, from 20% to 90% of copper oxide and from 10% to 80% of graphene. The method includes uniformly mixing copper salt solution and graphene oxide solution at first, and stirring the copper salt solution and the graphene oxide solution at a constant temperature for 15 minutes to 1 hour to obtain mixed solution; dripping sodium hydroxide solution into the mixed solution, continuously stirring the mixed solution added with the sodium hydroxide solution for 0.5 hour to 2 hours and allowing the mixed solution added with the sodium hydroxide solution to stand for 2 to 24 hours; and performing centrifuging and hydrothermal processing for the mixed solution added with the sodium hydroxide solution to obtain a product, and drying the product at the temperature of 120 DEG C for 12 hours to obtain the graphene-coated copper oxide composite cathode material. The graphene-coated copper oxide composite cathode material and the method have the advantages that the synthesis method is simple, the manufactured graphene-coated copper oxide composite cathode material is good in performance, and technical problems of poor conductivity of a copper oxide electrode and decrease of capacity due to gradual chalking in charge and discharge processes are solved.
Owner:TSINGHUA UNIV

Lithium-ion battery germanium/carbon composite negative electrode material and preparation method and application thereof

The invention discloses a lithium-ion battery germanium / carbon composite negative electrode material and a preparation method and an application thereof. The composite negative electrode material includes germanium nanoparticles, mesocarbon microbeads and amorphous carbon. The preparation method comprises the steps of (1) dissolving GeO2 in an alkaline solution, adding nanocrystalline cellulose, adjusting the pH-value of the obtained first suspension, adding the mesocarbon microbeads and stirring to form a second suspension, and transferring the second suspension to a water bath; (2) preparingan NaBH4 solution, adding the heated second suspension, stirring for reaction in the water bath, washing wafer vacuum filtration, then carrying out vacuum drying, roasting the dried solid in an inertgas or reducing atmosphere to obtain the product. The composite negative electrode material disclosed by the invention has high mass capacity and volume specific capacity, can effectively alleviate the volume change and pulverization of germanium, is high in cycle stability and good in compatibility with a propylene carbonate containing electrolyte, has the advantages of good low-temperature electrochemical performance and the like and can be applied to lithium-ion batteries.
Owner:NAT UNIV OF DEFENSE TECH

Sodium-ion battery negative electrode material and preparation method and application thereof

The invention discloses a preparation method and application of a sodium-ion battery negative electrode material. The preparation method comprises the following steps of synthesizing WS2 / MoS2-G, synthesizing WS2 / MoS2-G@C and applying the WS2 / MoS2-G and the WS2 / MoS2-G@C to a sodium-ion battery. The WS2 / MoS2-G is subjected to hydrothermal synthesis to generate WS2, MoS2 and heteroatom-doped grapheneare uniformly cross-linked and compounded together, recompression of graphene is reduced due to existence of sulfide, and good specific surface area and conductivity of graphene are reserved; the flexible graphene can slow down volume expansion, inhibit sulfide aggregation, introduce nanometer size, increase electrochemical activity, increase Na<+> adsorption and obtain more ion storage sites; and the WS2 / MoS2-G@C final product has multiple advantages of sulfide and graphene, the carbon precursor powder is carbonized to generate amorphous carbon with good interlayer spacing, the microstructure of the whole composite material is almost layered, weak Van der Waals' force combination is achieved, large Na<+> can be contained for back-and-forth de-intercalation, and good charging and discharging performance is achieved.
Owner:内蒙古杉杉科技有限公司

Preparation method and application of high-dispersion metal oxide/carbon nanofiber composite material

The invention discloses a preparation method and application of a high-dispersion metal oxide / carbon nanofiber composite material. The method is characterized by comprising the following steps: dissolving a metal precursor, a dispersing agent and polyacrylonitrile in dimethylformamide, and uniformly mixing to prepare a spinning solution; putting the spinning solution into an electrostatic spinningdevice, and preparing a fiber precursor membrane through electrostatic spinning; performing high-temperature carbonization treatment on the fiber precursor membrane in a nitrogen atmosphere to obtainthe high-dispersion metal oxide / carbon nanofiber composite material, wherein the dispersing agent is any one of malic acid, citric acid, polyvinyl alcohol, polyvinylpyrrolidone and gelatin. The high-dispersion metal oxide / carbon nanofiber composite material prepared by the invention is used as a self-supporting sodium ion battery negative electrode material; the problems that an existing composite material is large in metal oxide particle, low in dispersity, serious in agglomeration or pulverization in the charging and discharging process and the like are solved; and the composite material has the advantages of being simple in preparation process method, low in preparation cost, good in metal oxide dispersity, high in charging and discharging specific capacity, good in cycling stability and the like and has wide application prospects.
Owner:CHINA UNIV OF PETROLEUM (EAST CHINA)

Nano silicon material and preparation method thereof

The invention relates to a nano silicon material with an amorphous/nanocrystalline composite structure. In the application of a lithium/sodium ion battery, after lithium/sodium is embedded into a crystalline silicon material for the first time, a composite structure of an amorphous region (silicon-lithium alloy) and a crystalline region (not embedded with lithium) is formed, and volume expansion and structural change are generated; after lithium/sodium removal, volume shrinkage causes structure collapse, i.e., silicon particle fracture and pulverization. In order to provide enough lithium/sodium embedding space in advance and inhibit the volume change of lithium/sodium embedding/removal for the first time, the invention provides an amorphous/nanocrystalline composite structure and a controllable preparation method thereof, i.e., a nano silicon material with the amorphous/nanocrystalline composite structure is prepared by adopting a spark discharge and high-energy ball milling combined process, the amorphous region surrounds the nanocrystalline, the crystal face orientation of the nanocrystalline is randomly distributed, the proportion range of the amorphous region is controllable, and the amorphous region belongs to an isotropic material. In the application of lithium and sodium ion batteries, the structure can effectively relieve the problems of material fracture and pulverization caused by silicon material expansion/shrinkage due to embedding/removal of lithium/sodium, so that the cycle performance of the silicon negative electrode is improved.
Owner:江苏载驰科技股份有限公司

Graphene-coated copper oxide composite cathode material and method for manufacturing same

The invention discloses a graphene-coated copper oxide composite cathode material and a method for manufacturing the same. The graphene-coated copper oxide composite cathode material comprises, by mass, from 20% to 90% of copper oxide and from 10% to 80% of graphene. The method includes uniformly mixing copper salt solution and graphene oxide solution at first, and stirring the copper salt solution and the graphene oxide solution at a constant temperature for 15 minutes to 1 hour to obtain mixed solution; dripping sodium hydroxide solution into the mixed solution, continuously stirring the mixed solution added with the sodium hydroxide solution for 0.5 hour to 2 hours and allowing the mixed solution added with the sodium hydroxide solution to stand for 2 to 24 hours; and performing centrifuging and hydrothermal processing for the mixed solution added with the sodium hydroxide solution to obtain a product, and drying the product at the temperature of 120 DEG C for 12 hours to obtain the graphene-coated copper oxide composite cathode material. The graphene-coated copper oxide composite cathode material and the method have the advantages that the synthesis method is simple, the manufactured graphene-coated copper oxide composite cathode material is good in performance, and technical problems of poor conductivity of a copper oxide electrode and decrease of capacity due to gradual chalking in charge and discharge processes are solved.
Owner:TSINGHUA UNIV

Negative electrode material of stannous phosphate battery as well as preparation method and application of negative electrode material

The invention relates to the technical field of new energy materials, in particular to a stannous phosphate battery negative electrode material and a preparation method and application thereof. The invention provides a preparation method of a stannous phosphate battery negative electrode material, which specifically comprises the following steps: obtaining a tin-containing phosphonic acid metal organic framework (MOF) through a one-step hydrothermal method or a solvothermal method, namely taking the tin-containing phosphonic acid MOF material as a single precursor; then a composite negative electrode material with Sn3 (PO4) 2 uniformly dispersed in a phosphorus-doped carbon skeleton, namely the Sn3 (PO4) 2-atPC negative electrode material, is finally prepared through one-step calcination heat treatment, and the negative electrode material is uniform and controllable in morphology and well inherits the microstructure of the precursor; anions in Sn3 (PO4) 2 can be used as a matrix for buffering volume change to prevent pulverization of the electrode material, so that the cycle life is prolonged; after calcination, the carbon skeleton has good conductivity, and the cycling stability of the Sn3 (PO4) 2-atPC negative electrode material is enhanced; and meanwhile, when the material is applied to a sodium ion battery or a potassium ion battery, the material has relatively high charge-discharge specific capacity and good cycle stability.
Owner:QILU UNIV OF TECH

A kind of niobium pentoxide/carbon double quantum dot nanocomposite material and its preparation method and application

The invention discloses a niobium pentoxide / carbon double quantum dot nanocomposite material, a preparation method and an application thereof. The composite material is composed of niobium pentoxide and carbon double quantum dots, and the niobium pentoxide quantum dots and carbon quantum dots are closely combined; the mass fraction of the carbon quantum dots in the composite material is 20-40% . There are gaps between the niobium pentoxide / carbon double quantum dot particles, and the specific surface area is relatively large. This structure is not only conducive to the full contact between the electrolyte and the active material, but also effectively adapts to the volume expansion of the material during charge and discharge, thereby greatly improving its electrochemical performance when used as a negative electrode material for lithium-ion batteries. In the invention, the precursors of niobium and carbon quantum dots are firstly synthesized by a hydrothermal method, and then calcined in an argon atmosphere to obtain a nanocomposite material of niobium pentoxide / carbon double quantum dots. The preparation method is easy to operate, the reaction conditions are controllable, and it is easy to scale up experiments.
Owner:CENT SOUTH UNIV

Lithium-ion battery germanium/carbon composite negative electrode material and its preparation method and application

The invention discloses a lithium-ion battery germanium / carbon composite negative electrode material and a preparation method and an application thereof. The composite negative electrode material includes germanium nanoparticles, mesocarbon microbeads and amorphous carbon. The preparation method comprises the steps of (1) dissolving GeO2 in an alkaline solution, adding nanocrystalline cellulose, adjusting the pH-value of the obtained first suspension, adding the mesocarbon microbeads and stirring to form a second suspension, and transferring the second suspension to a water bath; (2) preparingan NaBH4 solution, adding the heated second suspension, stirring for reaction in the water bath, washing wafer vacuum filtration, then carrying out vacuum drying, roasting the dried solid in an inertgas or reducing atmosphere to obtain the product. The composite negative electrode material disclosed by the invention has high mass capacity and volume specific capacity, can effectively alleviate the volume change and pulverization of germanium, is high in cycle stability and good in compatibility with a propylene carbonate containing electrolyte, has the advantages of good low-temperature electrochemical performance and the like and can be applied to lithium-ion batteries.
Owner:NAT UNIV OF DEFENSE TECH

Pod-shaped MoS2-SnO2 magnesium-lithium hybrid ion battery positive electrode material as well as synthesis method and application thereof

The invention relates to a pod-shaped MoS2-SnO2 magnesium-lithium hybrid ion battery positive electrode material as well as a synthesis method and application thereof, the synthesis method comprises the following steps: step 1, dissolving SnCl2. 2H2O in a mixed solution composed of absolute ethyl alcohol and DMF to obtain a solution A; 2, dissolving PVP in the solution A, and a solution B is obtained; 3, adding nano flower-like MoS2 and mineral oil into the solution B, and stirring to obtain a precursor solution C for electrostatic spinning; and 4, setting the flow rate of an injection pump tobe 8mL. H <-1 >, and spraying the solution C, performing high-voltage electrostatic spinning, collecting the thin film on the silk collecting plate after the electrostatic spinning is finished, performing annealing treatment in air, and naturally cooling the thin film to room temperature to obtain a powdery pod-shaped MoS2-SnO2 magnesium-lithium hybrid ion battery positive electrode material sample. The charging and discharging capacity and dynamic characteristics of the magnesium-lithium double-salt battery and the cycling stability of the magnesium-lithium double-salt battery are improved,and the service life of the battery is prolonged.
Owner:SHAANXI UNIV OF SCI & TECH

A kind of red phosphorus/nitrogen-doped graphene composite negative electrode material and its preparation method and application

The invention relates to a red phosphorus / nitrogen-doped graphene composite negative electrode material and its preparation method and application. Firstly, nitrogen-doped graphene and red phosphorus are mixed uniformly according to the mass ratio of (2-4):(8-6) , to obtain a mixture; under a protective atmosphere, the obtained mixture is ball-milled to obtain a red phosphorus / nitrogen-doped graphene composite negative electrode material. The present invention utilizes the nitrogen-doped graphene material with good electronic conductivity as the base material, and through ball milling with red phosphorus, the insulating red phosphorus particles can be well dispersed in the conductive nitrogen-doped graphene material during the ball milling process , the complex has a large specific surface area, improves the overall electrical conductivity and increases the contact area with the electrolyte, alleviates the collapse and pulverization of the structure caused by the volume expansion of phosphorus-based materials during the deintercalation of potassium ions, and increases the Potassium ion diffusion rate; as a negative electrode material for potassium ion batteries, it has high reversible capacity, excellent rate performance and cycle stability.
Owner:咸阳瞪羚谷新材料科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products