Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1595 results about "Epoxy resin composite" patented technology

Epoxy is a thermosetting matrix resin and among the most commonly used resin systems in the composites industry. It's frequently used with continuous carbon fiber in aerospace, race car, marine and other high-performance applications.

Method for chemically modifying inorganic filler with graphene oxide, product and application

The invention discloses a method for chemically modifying inorganic filler with graphene oxide and a product. The method comprises the following steps: performing surface hydroxylation treatment and silane coupling agent treatment on the inorganic filler; maintaining the pH of a graphene oxide solution at 5.8-6.0 with an MES buffer solution; sequentially adding EDC and NHS, and performing ultrasonic treatment for 1-3 hours; adding the treated inorganic filler, and performing an amidation reaction at room temperature; and after the reaction, filtering, washing and drying to obtain the graphene oxide modified inorganic filler. The invention also discloses a method for preparing an inorganic filler/epoxy resin composite by use of the product. The process flow of the method disclosed by the invention is simple and environmentally friendly; the GO is connected to the surface of the inorganic filler by a chemical modification process, and the firm covalent bond combination between the GO and inorganic particles is generated, so that the interface adhesiveness and mechanical strength between the inorganic filler and the polymer are enhanced, and a new idea is provided to the modification of an inorganic filler surface and the preparation of a high-performance composite.
Owner:UNIV OF JINAN

Method for reclaiming carbon fiber reinforced epoxy resin composite material

The invention relates to a method for reclaiming a carbon fiber reinforced epoxy resin composite material. The conventional method is high in equipment requirement and high in reclamation cost. The method comprises the following steps of: adding a catalyst into an organic reagent to prepare supercritical CO2 composite solution; putting the carbon fiber reinforced epoxy resin composite material tobe decomposed into a reaction kettle, and adding the supercritical CO2 composite solution; and reacting for 1 to 24 hours at the temperature of between 100 and 250 DEG C under the pressure of 7.5 to 25.0MPa, cooling the product to normal temperature, washing and drying the solid product in the product to obtain carbon fibers, and performing reduced pressure distillation on the liquid product in the product to obtain phenol and derivatives thereof. The catalyst is one or two of liquid super acid, solid super acid, phosphotungstic acid, phosphomolybdic acid, acetic acid, formic acid, hydrochloric acid, sulfuric acid and nitric acid. The method has the advantages of high degradation efficiency, environmental friendliness, low cost and the like, and is a green method for reclaiming the waste and old carbon fiber reinforced epoxy resin composite material.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Epoxy resin composition as well as prepreg and copper-foil-clad laminated board prepared by using same

The invention relates to an epoxy resin composition as well as a prepreg and a copper-foil-clad laminated board prepared by using the same. The epoxy resin composition comprises the following essential components: (A) epoxy resin containing a naphthol structure, (B) an active ester serving as a curing agent, and (C) a curing accelerant. Because epoxy resin at least contains the naphthol structure in the molecular structure, the epoxy resin composition provided by the invention has higher functionality degree and high glass transition temperature; at the same time, the naphthol group structure is introduced to the molecular structure, thus the cured product has low water absorptivity and low expansion coefficient; due to the active ester serving as the curing agent, the advantages that the a polar group is not generated during the reaction between the active ester and epoxy, thus the dielectric properties are excellent and moisture and heat resistance are good are fully exerted; and in addition, because of the epoxy resin containing the special naphthol structure, the hydroscopicity of the resin cured product is further reduced and the dielectric loss value of the cured product is lowered. The prepreg and the copper-foil-clad laminated board provided by the invention have excellent dielectric properties, moisture and heat resistance and high glass transition temperature.
Owner:GUANGDONG SHENGYI SCI TECH

Composite modified asphalt and preparation method thereof

ActiveCN103232717AGood compatibilityHigh temperature and low temperature performanceBuilding insulationsEpoxyBridge deck
The invention relates to composite modified asphalt. The composite modified asphalt is prepared from the following raw materials in percentage by weight: 23.1-45.5% of polyurethane modified epoxy resin, 5-10% of compatibilizer, 5-10% of plasticizer, 5-10% of curing agent and 40-60% of road petroleum asphalt, wherein the polyurethane modified epoxy resin is terminal-amino polyurethane modified epoxy resin, terminal-isocyanato polyurethane modified epoxy resin or imidazolyl-terminal-capped polyurethane modified epoxy resin, the compatibilizer is naphthalene oil, asphalt tar or a mixture of naphthalene oil and asphalt tar, the plasticizer is dioctyl phthalate, dibutyl phthalate or a mixture of dioctyl phthalate and dibutyl phthalate, the curing agent is a modified aromatic amine curing agent, and the road petroleum asphalt is 70# petroleum asphalt, 90# petroleum asphalt or 110# petroleum asphalt. The road performance of concrete adopting the polyurethane epoxy resin composite modified asphalt further meets the requirements of technical specifications and surpasses that of the similar imported product Japan Epoxy, so that the composite modified asphalt can be widely applied to the construction of steel bridge deck pavement, and has great significance in opening a market for domestic epoxy asphalt materials.
Owner:重庆市智翔铺道技术工程有限公司

Graphene-toughened epoxy resin composite material and preparation method thereof

The invention provides a graphene-toughened epoxy resin composite material and a preparation method thereof. The provided material is prepared by the following steps: taking epoxy resin as the base material, then adding a graphene toughening agent and a curing agent, and finally heating and curing to obtain the graphene-toughened epoxy resin composite material. The graphene toughening agent is polydopamine modified graphene, polydopamine can well adhere on the graphene surface, the molecular chain of polydopamine comprises a great amount of hydroxy groups and amino groups, thus the interface binding performance between graphene and epoxy resin is enhanced, and the dispersion of the graphene toughening agent in epoxy resin is promoted. The weight ratio of epoxy resin, curing agent, and graphene toughening agent is 100:(15-50):(0.1-8). The preparation method has the advantages that no toxic solvent is used during the preparation process, thus the harm to human and environment is avoided; the raw materials are cheap and easily available; the operation is convenient, and massive production can be easily achieved. Compared with the epoxy resin, the toughness of the prepared epoxy resin composite material is greatly improved, and moreover, due to the excellent thermal conductivity of graphene, the conductivity of epoxy resin is improved.
Owner:JIANGNAN UNIV

Method for catalytically decomposing carbon fiber-reinforced thermosetting epoxy resin composite material

The invention discloses a method for catalytically decomposing a carbon fiber-reinforced thermosetting epoxy resin composite material. In the method, SO4<2->/MxOy solid superacid is taken as a catalyst; and the method comprises the following steps of: reacting hydrogen peroxide serving as an oxidant with the carbon fiber-reinforced thermosetting epoxy resin composite material to oxidatively decompose thermosetting epoxy resin into the homologues of benzene or phenol and dissolve in an organic solvent, cooling, separating solid form liquid, washing the obtained solid, drying, separating carbon fiber and the SO4<2->/MxOy solid superacid, and distilling the obtained liquid under reduced pressure to obtain decomposed thermosetting epoxy resin residue. Compared with the prior art, the method for catalytically decomposing the carbon fiber-reinforced thermosetting epoxy resin composite material has the advantages of high decomposition efficiency, environmental protection and easy realization, and is a method for recovering the waste carbon fiber-reinforced thermosetting epoxy resin composite material in an environmentally friendly way, wherein the recovery rate of carbon fiber can reach over 95 percent, and the recovered carbon fiber has basically complete surface, does not have residual impurity, and can be recycled.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI

Foamed aluminum sandwich structure composite material and preparing method thereof

The invention provides a foamed aluminum sandwich structure composite material and a preparing method thereof. The foamed aluminum sandwich structure composite material comprises a foamed aluminum core material, a toughening interface layer and skin, wherein the toughening interface layer is located between the foamed aluminum core material and the skin, the toughening interface layer is made of an epoxy resin composite material, and the epoxy resin composite material is composed of an epoxy resin matrix, a toughening agent, a diluent, hollow microspheres, chopped fiber, a curing agent and an accelerant; pores in the surface of the foamed aluminum core material is filled with the epoxy resin composite material to form the toughening interface layer. According to the technical scheme, the toughening interface layer is formed between the composite material skin and the foamed aluminum core material by means of multi-component low-density epoxy filling adhesive, and interface bonding strength can be effectively improved; by means of the skin designed based on functional gradient, the interface bonding property of the foamed aluminum sandwich structure in a humid and hot environment is improved, and the impact resistance of the foamed aluminum sandwich structure is improved.
Owner:SHENZHEN ACAD OF AEROSPACE TECH

Method for preparing functionalized graphene and composite material of functionalized graphene

The invention discloses a method for preparing functionalized graphene and a composite material of the functionalized graphene. The method for preparing the functionalized graphene comprises the following steps of: performing Friedel-Crafts reaction on natural graphite which is taken as a raw material to obtain modified graphite, extracting, purifying, and uniformly dispersing in an organic solvent with ultrasonic to form stable graphene suspension liquid. The method for preparing the composite material comprises the following steps of: adding epoxy resin into the graphene suspension liquid, stirring for dissolving, uniformly mixing with ultrasonic, distilling under reduced pressure to remove the organic solvent to obtain a graphene/epoxy resin composite; and adding an epoxy resin curing agent, an accelerant and micrometer silver sheets sequentially, and heating for curing to obtain the composite material of a graphene polymer, namely a graphene/epoxy resin conducting composite material. The edge functionalized graphene has a high interaction between functional groups at the edge and a polymer matrix, so that the dispersion of the graphene in the polymer matrix can be promoted, the agglomeration degree can be reduced, and the interface performance of the composite material can be enhanced.
Owner:SOUTH CHINA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products