Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

114results about How to "Facilitated reaction kinetics" patented technology

Method for bacterial lysis

The present invention is directed to a microfluidic device for lysis of cells, such as bacteria and microorganisms. In particular, the present invention relates to microfluidic devices and methods of manufacture of such microfluidic devices comprising a substrate with at least one channel packed with a polymer monolith embedded with carbon particles, for example carbon nanotubes. The microfluidic devices and methods of the present invention are useful for cell lysis of cells within a biological sample, such as a untreated biological sample comprising microorganisms, such as but not limited to gram positive and gram negative bacteria. In some embodiments, the microfluidic devices of the present invention can also optionally comprise other modules enabling further processing of the biological sample, for example isolation, purification and detection of biomolecules released from the lysed cells, such as but not limited to nucleic acids or proteins or peptides from the lysed cells, providing a complete Lab-on-a-Chip analysis system for biomolecules released from difficult to lyse microorganisms in a single step or process. The microfluidic devices of the present invention can also be adapted and are useful to methods to enrich for microorganisms in a biological sample, for example enrich for a desired type of bacteria within a biological sample. The microfluidic devices and methods of the present invention can be adapted to perform highly efficient lysis of microorganisms within a biological sample for diagnostic tests, for example for diagnosis of infectious agents and pathogens, such as bacteria, viruses or parasites.
Owner:BOSTON MEDICAL CENTER INC

Organic recycling with metal addition

The invention is directed to methods for producing a granular nitrogen fertilizer from an organic material comprising adding a metallic salt to said organic material to form a slurry. Preferably the organic material comprises dewatered biosolids and contains water from a scrubber. Metallic salts that can be used comprise a salt of iron, zinc, or a mixture thereof. Preferred iron salts comprises ferric sulfate or ferric oxide, and preferred zinc salts comprises zinc sulfate or zinc oxide. Preferably, the metallic salt is mixed with an acid such as sulfuric acid to form an acidified metal salt. Slurry pH ranges from approximately 2-2.5. The acidified metal salt is added to the organic material in sufficient quantity to lower viscosity of the slurry such that the resulting fluid does not hinder fluid flow during operation. When the metallic salt comprises acidified ferric sulfate or ferrous sulfate, sufficient iron can be present to produce a fertilizer product with 0.1 weight percent to 10 weight percent iron sulfate calculated on a dry weight basis. The invention is also directed to fertilizer products made by the methods of the invention. Preferred products are granules and the metallic salt increases product hardness. Fertilizer granules preferably contain metal that is bioavailable to a plant when used as a fertilizer. Solubility of the metal of the product in water is enhanced, and the product is low staining.
Owner:UNIFIED ENVIRONMENTAL SERVICES GROUP +1

Organic recycling with metal addition

The invention is directed to methods for producing a granular nitrogen fertilizer from an organic material comprising adding a metallic salt to said organic material to form a slurry. Preferably the organic material comprises dewatered biosolids and contains water from a scrubber. Metallic salts that can be used comprise a salt of iron, zinc, or a mixture thereof. Preferred iron salts comprises ferric sulfate or ferric oxide, and preferred zinc salts comprises zinc sulfate or zinc oxide. Preferably, the metallic salt is mixed with an acid such as sulfuric acid to form an acidified metal salt. Slurry pH ranges from approximately 2-2.5. The acidified metal salt is added to the organic material in sufficient quantity to lower viscosity of the slurry such that the resulting fluid does not hinder fluid flow during operation. When the metallic salt comprises acidified ferric sulfate or ferrous sulfate, sufficient iron can be present to produce a fertilizer product with 0.1 weight percent to 10 weight percent iron sulfate calculated on a dry weight basis. The invention is also directed to fertilizer products made by the methods of the invention. Preferred products are granules and the metallic salt increases product hardness. Fertilizer granules preferably contain metal that is bioavailable to a plant when used as a fertilizer. Solubility of the metal of the product in water is enhanced, and the product is low staining.
Owner:UNITY FERTILIZER LLC

Method for producing low-sulfur molten iron in one step by smelting and reducing copper slag

InactiveCN101824505ALower oxygen potentialReduce sulfur contentFluidised-bed furnacesMelting tankCyclone
The invention discloses a method for producing low-sulfur molten iron in one step by melting and reducing copper slag. The method is characterized in that the method includes the following processing steps that: the high-temperature molten copper slag is first reduced by reducing agent in a high-temperature reduction furnace, wherein, when the reduction reaction of iron is nearly finished, a certain amount of additive, which is theoretically calculated, is added in a melting bath based on the existing slag system in the reduction furnace, a jet gun is inserted into a slag-iron interface to blow carbon monoxide into the melting bath when the additive is completely molten, the blowing time is 30min to 40min, and desulphurization reaction is almost finished. The melting bath is kept still, and when slag and iron are completely separated, the high-temperature low-sulfur molten iron and the slag are respectively discharged out of a tap hole and a slag hole. In addition, after high-temperature flue gas passes through a secondary combustion chamber, a residual heat boiler recovers residual heat from the flue gas, dust is collected from the flue gas by cyclone, and the flue gas is washed. By sufficiently utilizing the high desulphurization of the refined slag and blowing the carbon monoxide, the invention solves the defect that the content of sulfur in the molten iron produced by melting and reducing the copper slag for ironmaking is high; the processing flow is short, the emission of pollutant is less, and moreover, the applicability is high.
Owner:KUNMING UNIV OF SCI & TECH

Silicon-nitrogen doped carbon-nitrogen doped graphene composite material, and preparation method and application thereof

The invention discloses a silicon-nitrogen doped carbon-nitrogen doped graphene composite material. The silicon-nitrogen doped carbon-nitrogen doped graphene composite material is formed by graphene oxide, a nitrogen-containing carbon source and silicon, wherein a mass ratio of graphene oxide to the nitrogen-containing carbon source to silicon is 1-4:2:2-6; and nitrogen doped carbon with a core-shell structure is obtained through a solution mixing process and a high temperature charring process, and coats silicon particles, and the nitrogen doped carbon coated silicon particles are uniformly inlaid in nitrogen doped graphene interlayer. A preparation method of the composite material comprises the following steps: adding a nitrogen-containing carbon source solution into a silicon dispersion, and carrying out stirring ultrasonic treatment; adding a graphene oxide dispersion solution to the above obtained mixed solution in the ultrasonic process; and carrying out stirring heating, evaporation pulping, freeze drying and high temperature charring in order to obtain the silicon-nitrogen doped carbon-nitrogen doped graphene composite material. The nitrogen-containing carbon source is used to form a carbon layer on the surface of silicon particles and realize nitrogen doping of the carbon layer and graphene, the preparation process is simple, controllable and environmentally-friendly, and the composite material greatly improves the integral electrochemical performances.
Owner:TIANJIN UNIV

Transitional metal phosphide-carbon composite material as well as preparation method and application thereof

The invention provides a transitional metal phosphide-carbon composite material, which belongs to the field of electrochemical energy materials. A carbon precursor is used as a carbon source and a nitrogen source, the transitional metal ions are uniformly dispersed on a carbon precursor substrate by virtue of a complexing effect of the transitional metal ions and the carbon precursor, and the single-dispersed transitional metal phosphide nano particles are in-situ synthesized by virtue of the phosphorization process. The single-dispersed transitional metal phosphide nano particles are embeddedinto the carbon material substrate, so that the volume expansion of the phosphide particles in the charging-discharging process can be alleviated, the cycling stability of the material can be improved, the electric conductivity of the composite material can also be increased, the reaction dynamics process of an electrode is accelerated, the heteroatom-doped carbon is combined with the transitional metal phosphide by virtue of a covalent bond, so that the interaction of the heteroatom-doped carbon and the transitional metal phosphide is improved, the clustering problem of the phosphide particles in the charging and discharging process can be solved, and the synergistic effect between the carbon and phosphide improves the specific capacity and rate capability of the composite material.
Owner:YANSHAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products