Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

153results about How to "Layer is high" patented technology

Electronic package with high density interconnect layer

An electronic package, and method of making the electronic package, is provided. The package includes a semiconductor chip and an multi-layered interconnect structure having a high density interconnect layer such as an allylated surface layer. The semiconductor chip includes a plurality of contact members on one of its surfaces that are connected to the multi-layered interconnect structure by a plurality of solder connections. The multi-layered interconnect structure is adapted for electrically interconnecting the semiconductor chip to a circuitized substrate (eg., circuit board) with another plurality of solder connections and includes a thermally conductive layer being comprised of a material having a selected thickness and coefficient of thermal expansion to substantially prevent failure of the solder connections between said first plurality of electrically conductive members and the semiconductor chip. The electronic package further includes a dielectric material having an effective modulus to assure sufficient compliancy of the multi-layered interconnect structure during operation. The allylated surface layer has the property of being able to withstand thermal stresses that arise during thermal cycling operation of the electronic package.
Owner:ULTRATECH INT INC

Ethylenically unsaturated compound, light sensitive composition, light sensitive planographic printing plate material and printing process employing the same

The present invention provides a novel ethylenically unsaturated compound which is highly sensitive to scanning exposure due to an ultraviolet to near-infrared laser and is cured to give good physical properties; a light sensitive composition providing good developability and high sensitivity and forming a high strength layer; a planographic printing plate material having advantages that good developability, high sensitivity and high strength layer are obtained, particularly a planographic printing plate material requiring no developing machine which are mounted on a printing press without any development, followed by printing and which provides excellent developability on a printing press and printing durability; and a printing process. The ethylenically unsaturated compound has in the molecule a photo-oxidation group and a polymerizable ethylenically unsaturated bond, and has a predetermined solubility in water or an aqueous alkali solution. The planographic printing plate material is characterized in that it comprises a support and provided thereon, a light sensitive layer containing the ethylenically unsaturated compound, a polyhalogen compound as a photopolymerization initiator, a water-soluble polymer binder as a polymer binder and an infrared absorbing agent.
Owner:KONICA MINOLTA MEDICAL & GRAPHICS INC

Epitaxial thin films

Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary / interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.
Owner:MICROCOATING TECH +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products