Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

152 results about "CZTS" patented technology

Copper zinc tin sulfide (CZTS) is a quaternary semiconducting compound which has received increasing interest since the late 2000s for applications in thin film solar cells. The class of related materials includes other I₂-II-IV-VI₄ such as copper zinc tin selenide (CZTSe) and the sulfur-selenium alloy CZTSSe. CZTS offers favorable optical and electronic properties similar to CIGS (copper indium gallium selenide) making it well suited for use as a thin-film solar cell absorber layer, but unlike CIGS (or other thin films such as CdTe), CZTS is composed of only abundant and non-toxic elements. Concerns with the price and availability of indium in CIGS and tellurium in CdTe, as well as toxicity of cadmium have been a large motivator to search for alternative thin film solar cell materials. Recent material improvements for CZTS have increased the efficiency to 12.6% in laboratory cells, but more work is needed for their commercialization.

Method for preparing copper-zinc-tin-sulfur light absorbing layer of film solar batter

The invention relates to a technology for preparing a film solar battery, and in particular relates to a method for preparing a copper-zinc-tin-sulfur light absorbing layer. The method for preparing the copper-zinc-tin-sulfur light absorbing layer comprises the following steps of: (1) mixing copper, zinc, tin and sulfur simple substances in a stoichiometric ratio, adding a dispersant into the mixture, fully mixing, and then performing ball milling to obtain a uniformly and stably dispersed copper-zinc-tin-sulfur (CZTS) nano-ink, wherein the mole ratio of Cu atoms to Zn atoms to Sn atoms to S atoms is (1.8-2):(1-1.3):(0.7-1):4, and the mole ratio of the dispersant to the CZTS is (1-1,000):1; (2) coating the CZTS nano-ink on a substrate, and drying in an air atmosphere to remove the dispersant to obtain a CZTS precursor film; and (3) vulcanizing the CZTS precursor film in an inert atmosphere (nitrogen or argon gas atmosphere) to obtain a CZTS light absorbing layer of a solar battery. According to the method for preparing the CZTS light absorbing layer, the equipment structure is simple, the operation is easy, the production efficiency is high, the problems of cost and environmental pollution are fundamentally solved, and a new train of thought for large-scale industrialization of CZTS-based film solar batteries is widened.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Preparation method of ZnS-cladded ZnO nanoarray core-shell structure

The invention relates to a method for preparing ZnO seed crystal by utilizing a magnetron sputtering method, growing a ZnO nanoarray by utilizing a hydrothermal method and growing a ZnS shell structure by utilizing the hydrothermal method through vulcanization. The grown ZnO @ ZnS nanoarray core-shell structure can be used as a window layer of a copper-zinc-tin-sulfur (CZTS) solar cell. The method belongs to the technical field of preparation process of solar cell thin-film devices. The preparation method comprises the following steps of: firstly adopting the magnetron sputtering method for sputtering ZnO seed crystal on fluorine-doped SnO2 conductive glass (FTO), then using a vacuum tube furnace for thermal treatment on the seed crystal in a N2 atmosphere at the temperature of 400 DEG C for 20 minutes, then growing the ZnO nanoarray through the hydrothermal method with the growth solution of 0.05 mol/L zinc nitrate aqueous solution and 0.05 mol/L methenamine (HMT) aqueous solution, and finally, growing the ZnS shell structure by utilizing the hydrothermal method through vulcanization with the growth solution of 0.05-0.50 mol/L thioacetamide (TAA) aqueous solution, vulcanizing for 1-9 hours in a hydrothermal reaction kettle and taking out, and then putting into a drying oven for drying to obtain the ZnO @ ZnS nanoarray core-shell structure.
Owner:SHANGHAI UNIV

Method for preparing CZTS (Copper Zinc Tin Sulfide) (Se) series nanometer powder by low-temperature mechanical alloying

The invention discloses a method for preparing CZTS (Copper Zinc Tin Sulfide) (Se) series nanometer powder by low-temperature mechanical alloying. Elementary substances Cu powder, Zn powder, Sn powder and S (Se) powder are added into a ball-milling tank according to a certain mole ratio, an alcohol and amine mixed liquor is used as a process control agent, ball milling is carried out according to a rated ratio of grinding media to material, a set rotational speed and ball milling time, and a ball-milled product is centrifugally washed and dried to obtain a target product. In the raw materials, elementary substances sulfur powder and selenium powder can be exchanged in any mole ratio; and the process control agent is the mixed liquor of alcohol and amine with the volume ratio of 1-20:1, the alcohol is one of ethanol, ethylene glycol, normal butanol, isobutanol, isoamylol, tertiary amyl alcohol and glycerol, and the amine is one of ethanediamine, iso-butylamine, diisopropylamine, hexamethylenediamine and triethylamine. The method disclosed by the invention has the advantages of easy obtainment of raw materials, pure products, low energy consumption, easy control in product shape and appearance, simple process and the like, and is suitable for industrial production.
Owner:GUILIN UNIVERSITY OF TECHNOLOGY

Preparation method of germanium-doped CZTS thin film, thin film and solar cell

The application discloses a preparation method of a germanium-doped CZTS thin film. The preparation method comprises the following steps: preparing a CuS nano-particle; preparing a Ge-doped precursor slurry; preparing Ge-doped precursor film; carrying out sulfidizing on the Ge-doped precursor film to obtain a Cu2ZnSn1-xGexS4 film; and carrying out selenylation processing on the Cu2ZnSn1-xGexS4 film to obtain Cu2ZnSn1-xGex(S,Se)4 film. In addition, the application also discloses a germanium-doped CZTS thin film and a solar cell. According to the invention, because the Cus nano-particle is used, grain crystal growing and film densifying can be promoted; the Ge is doped when the precursor slurry is prepared, so that the forbidden band width of the CZTS thin film can be adjusted and the photoelectric conversion efficiency of the CZTS cell can be improved; because an organic solvent like methyl alcohol or ethanol and the like is used, the sulfur source used for sulfidizing processing is solid powdered sulfur, and the selenium source used for selenizing processing is solid selenium powder, the whole production process is environmentally friendly; and a volume expansion effect using a Se atom portion to replace an S atom during the selenizing process is used for structural densifying of the film, and the forbidden band width of the CZTS absorption layer is adjusted, so that matching with a solar spectrum is realized well.
Owner:徐东

Nanometer structure copper zinc tin sulfide (CZTS) film photovoltaic cell and preparation method of nanometer structure CZTS film photovoltaic cell

The invention discloses a nanometer structure copper zinc tin sulfide (CZTS) film photovoltaic cell, which sequentially consists of a substrate, a back electrode, a p type semiconductor nanometer wire array, an n type semiconductor thin layer, a window layer and a metal grid electrode, wherein the p type semiconductor nanometer wire array consists of semiconductor alloy (CuxB<1-x>)2Cy(DzS<1-z>), wherein x is greater than 0 but is smaller than or equal to 1, y is greater than or equal to 0 but smaller than or equal to 2, z is greater than or equal to 0 but smaller than 1, B is silver and/or gold, C is more than one kind of materials of aluminum, zinc or tin, D is selenium and/or tellurium. Through the subsequent processes of controlling the deposition element types, the deposition element sequence, the heat treatment mode and the like, the ingredients, the phase structure and the energy band structure of the absorption layer nanometer wire array are regulated, so the solar photovoltaic cells with different structures and performance can be prepared. The nanometer structure CZTS film photovoltaic cell provided by the invention has the advantages that the light reflection is reduced, good light capture capability is realized, the band gap regulation is improved, and the great improvement of the photoelectric conversion efficiency is finally realized.
Owner:SUN YAT SEN UNIV

Preparation method for CZTS nano-particle material

A preparation method for a CZTS nano-particle material belongs to the technical field of materials. The method comprises the following steps: first, respectively preparing a reaction system A (dissolving copper salt, antimonic salt and elemental sulfur in ethylene diamine in an ultrasonic manner) and a reaction system B (a water solution of zinc salt and tin salt); then, mixing the system A and the system B in an ultrasonic manner, sealing and heating to 200 DEG C; keeping the the temperature for 7-24 hours for reaction; finally, taking black powder at the lower layer, and obtaining a target product through centrifugation and washing. According to the invention, a moderate amount of an antimony compound is added to allow copper ions and Sb ions to react with the sulfur so as to generate a mobile-phase copper-antimony-sulfur compound and to promote the growth of Cu2ZnSnS4; meanwhile, the crystal grain dimensions of the Cu2ZnSnS4 nano particles are more uniform. The prepared CZTS nano-particle is good in crystallinity, has no other impurity phase, and is more uniform in dimension distribution; the reaction time is greatly shortened under the action of the mobile phase; only sealing and heating equipment is required during the preparation process, so that the preparation steps are simple, and mass production is achieved.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Method for preparing crystal-phase-controllable monodispersed Cu2ZnSnS4 nanocrystalline

The invention discloses a method for preparing crystal-phase-controllable monodispersed Cu2ZnSnS4 nanocrystalline, which belongs to the field of photoelectric material preparation. The method includes: precursor complexation, namely adding metal chloride salt and simple substance sulfur into a container, adding alcohol solvent and oleyl amine, feeding nitrogen or argon as shielding gas, magnetically stirring, heating to a certain temperature and complexing to obtain reaction precursor liquid; solvent thermal preparation, namely stirring while adding the shielding gas nitrogen or argon, heating the reaction precursor liquid to a certain temperature, reacting for a while, cooling and adding ethanol into reaction liquid with liquidity, centrifugally separating for precipitation to obtain Cu2ZnSnS4 nanocrystalline grains; cleaning, namely using cleaning agent to wash off the oleyl amine on the surfaces of the obtained Cu2ZnSnS4 nanocrystalline grains to obtain monodispersed CZTS (copper zinc tin sulfide) nanocrystalline colloid; and post-treatment, namely subjecting the obtained monodispersed CZTS nanocrystalline colloid to vacuum drying to obtain monodispersed Cu2ZnSnS4 nanocrystalline powder. The method is simple and low in cost.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Single-crystal particle film and preparation method of substrate-free flexible solar cell employing single-crystal particle film

The invention discloses a single-crystal particle film and a preparation method of a substrate-free flexible solar cell employing the single-crystal particle film. With an organic polymer material as a binder, micron-sized CZTS and CZTSSe single-crystal particles are mixed into the binder; the single-crystal particle film is prepared by a coating method; the single-crystal particles leaking from the binder on two surfaces are removed through mechanical grinding and plasma etching; and functional layers such as a buffer layer, a window layer and an electrode are prepared, so as to form an entire battery structure. Preparing, screening, cleaning and passivating processes of the single-crystal particles and the preparation process of a single-crystal particle absorption layer are separate, and a harsh high-temperature environment can be used in the preparation and optimization processes of the single-crystal particles, so that effective control on components of CZTS and CZTSSe is achieved; the effects to a substrate, the window layer, the buffer layer and the like caused by preparation conditions of the absorption layer do not need to be considered; and the method has significant advantages in the aspects of material and energy utilization rate and industrial production.
Owner:LINGNAN NORMAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products