Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

76results about How to "No cytotoxicity" patented technology

Preparation method of calcium phosphate bone cement simultaneously releasing zinc ions and silicate ions

The invention discloses a preparation method of calcium phosphate bone cement simultaneously releasing zinc ions and silicate ions. The preparation method comprises the following steps that (1) calcium phosphate bone cement powder, inorganic salt containing zinc ions and inorganic salt containing silicate ions are mixed evenly to obtain the calcium phosphate bone cement containing zinc and silicon elements, namely a solid phase; (2) the solid phase cement obtained through the step (1) and a liquid phase are blended, wherein the mass ratio of the liquid phase volume to the solid phase powder is 0.3-0.6 mL / g. The zinc ions and the silicate ions are simultaneously added into the calcium phosphate bone cement for the first time, the calcium phosphate bone cement has the advantages of having high mechanical strength and appropriate setting time and being capable of continuously releasing the zinc ions and silicate ions for a long time and controllable in release amount, and meanwhile the two different types of released functional ions can play roles of synergistically inhibiting bone absorption and promoting bone repair. Compared with traditional calcium phosphate bone cement, the calcium phosphate bone cement has more excellent bone defect repairing effect and wider clinical application prospect.
Owner:SOUTH CHINA UNIV OF TECH

Method for positioning, in cytoplasm, antibody having complete immunoglobulin form by penetrating antibody through cell membrane, and use for same

The present invention relates to a method of localizing an intact immunoglobulin-format antibody in cytosol by permeating membrane of cells. The present invention also relates to a light-chain variable region (VL) that induces an intact immunoglobulin-format antibody to penetrate the membrane of living cells and be localized in the cytosol, and to an antibody comprising the same. The present invention also relates to a biologically active molecule fused to the antibody and selected from the group consisting of peptides, proteins, small-molecule drugs, nanoparticles and liposomes. The present invention also relates to a composition for prevention, treatment or diagnosis of cancer, comprising: the antibody; or a biological active molecule fused to the antibody and selected from the group consisting of peptides, proteins, small-molecule drugs, nanoparticles and liposomes. The present invention also relates to a polynucleotide that encodes the light-chain variable region and the antibody. The present invention also relates to a method for producing an antibody which penetrates cells and is localized in the cytosol.
According to the method of the present invention, which allows an intact immunoglobulin-format antibody to actively penetrate living cells and be localized in the cytosol, the antibody can penetrate living cells and be localized in the cytosol, without having to use a special external protein delivery system. Moreover, the use of the cytosol-penetrating light-chain variable region according to the present invention and the intact immunoglobulin-format antibody comprising the same can penetrate cells and remain in the cytosol, without affecting the high specificity and affinity of a human antibody heavy-chain variable region (VH) for antigens, and thus can be localized in the cytosol which is currently classified as a target in disease treatment based on small-molecule drugs, and at the same time, can exhibit high effects on the treatment and diagnosis of tumor and disease-related factors that show structurally complex interactions through a wide and flat surface between protein and protein. In addition, these can selectively inhibit KRas mutants, which are major drug resistance-associated factors in the use of various conventional tumor therapeutic agents, and at the same time, can be used in combination with conventional therapeutic agents to thereby exhibit effective anticancer activity.
Owner:ORUM THERAPEUTICS INC

Method for inhibiting intracellular activated ras using intact immunoglobulin-type antibody having cytosol-penetrating ability and use thereof

The present invention relates to a method for inhibiting intracellular activated RAS using an intact immunoglobulin-type antibody having the ability to penetrate the cytosol. The present invention also relates to a heavy-chain variable region (VH) which induces an intact immunoglobulin-type antibody to actively penetrate the cytosol of living cells through endocytosis and endosomal escape and to bind to activated RAS in the cytosol, and to an antibody comprising the same. The present invention also relates to a method of inhibiting the growth of cancer or tumor cells and a method of treating cancer or tumor, by use of the antibody. The present invention also relates to a method for screening a heavy-chain variable region that binds specifically to RAS in the cytosol. The present invention also relates to a biologically active molecule fused to the antibody and selected from the group consisting of peptides, proteins, small-molecule drugs, nanoparticles and liposomes. The present invention also relates to a composition for prevention, treatment or diagnosis of cancer, comprising: the antibody; or a biological active molecule fused to the antibody and selected from the group consisting of peptides, proteins, small-molecule drugs, nanoparticles and liposomes. The present invention also relates to a polynucleotide that encodes the light-chain variable region and the antibody.
According to the present invention, the method for inhibiting intracellular activated RAS using an intact immunoglobulin-type antibody having the ability to penetrate the cytosol is achieved by allowing the antibody to penetrate living cells and to specifically recognize activated (GTP-bound) RAS in the cytosol. Thus, the antibody can target activated (GTP-bound) RAS in the cytosol of living cells and inhibit the activity of the RAS.
Furthermore, the antibody light-chain variable region according to the present invention and an antibody comprising the same is able to penetrate living cells and localize in the cytosol, without having to use a special external protein delivery system. Particularly, the antibody light-chain variable region according to the present invention can easily interact with various human heavy-chain variable regions (VHs) and has the ability to penetrate the cytosol and remain in the cytosol, and an intact IgG-type monoclonal antibody comprising the light-chain variable region can penetrate cells and localize in the cytosol, and shows no cytotoxicity non-specific for target cells.
The antibody heavy-chain variable region according to the present invention and an antibody comprising the same can selectively inhibit mutations of the major drug resistance-related factor RAS of conventional various tumor therapeutic agents, and can exhibit synergistic anticancer activity with conventional therapeutic agents. In addition, the cytosol-penetrating, intact immunoglobulin-type antibody according to the present invention can penetrate cells and remain in the cytosol, without affecting the high specificity and affinity of a human antibody heavy-chain variable region (VH) for antigens, and thus can localize in the cytosol which is currently classified as a target in disease treatment based on small-molecule drugs, and at the same time, can exhibit high effects on the treatment and diagnosis of tumor and disease-related factors that show structurally complex interactions through a wide and flat surface between protein and protein.
Owner:ORUM THERAPEUTICS INC

Fluorine-containing antibacterial coating on the surface of metal materials and preparation method thereof

The invention provides a fluorine-containing anti-bacterial coating layer of the metal material surface and a preparation method thereof and belongs to the technical field of surface anti-bacterial treatment. The coating layer comprises oxygen, fluorine, a R-F compound and a R-O compound and has a nanoscale hole structure and / or a nanoscale protrusion structure, and R is one of titanium, a titanium alloy, stainless steel, a cobalt alloy, a magnesium alloy or a zinc alloy. The preparation method comprises the following steps that (1) surface pretreatment is conducted; (2) vacuum preparation is conducted; (3) argon plasma cleaning is conducted; and (4) fluorinated treatment is conducted, specifically, argon, oxygen and carbon tetrafluoride are simultaneously pumped into a plasma reaction chamber to conduct fluorinated treatment, and a plasma-treated metal material is prepared. When the fluorine-containing anti-bacterial coating layer makes contact with a bacterium solution or other solutions, fluorion is dissolved out, and the bactericidal and anti-bacterial effects are achieved; and the preparation method can obtain the anti-infective medical metal material which cannot generate cytotoxicity, and the bacterial infective problem being relevant to metal implantable instruments is solved.
Owner:NORTHEASTERN UNIV LIAONING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products