Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1176results about "Alkali metal sulfites/sulfates" patented technology

Technology for recovering water resources and salt from coking wastewater in coal chemical industry

A technology for recovering water resources and salt from coking wastewater in the coal chemical industry comprises the following steps: the wastewater is subjected to defluorination chemical treatment and subjected to sodium carbonate softening and precipitating treatment simultaneously, an advanced oxidation process is used for TOC (total organic carbon) degradation, a multi-medium and activated carbon filter is used for filtering separation, ultrafiltration is performed, nanofiltration membrane separation is performed, calcium and magnesium ions are separated, the calcium and magnesium ions in water produced through nanofiltration are lower than 2 mg / L, CaF2 crystallization scaling is hard to form, and nanofiltration passing liquid and nanofiltration strong brine are obtained; the nanofiltration passing liquid and the nanofiltration strong brine are treated respectively. Fluoride ions, hardness and organic carbon in the wastewater are removed, separation of multivalent salt and monovalent salt as well as concentration and evaporative crystallization of the salt is realized, more than 98% of the water resources is recovered, more than 95% of the salt resources are recovered, secondary hazardous waste is not produced, the system operation cost is reduced, and the problem about resource recovery and the environmental problem are solved finally.
Owner:湖南湘牛环保实业有限公司

Treating method for sewage containing sodium sulfate and sodium chloride

The invention provides a treating method for sewage containing sodium sulfate and sodium chloride. The method comprises a step of preparing sewage to be treated as raw water and a step of carrying out nanofiltration on the raw water. The method may also comprise a step of carrying out evaporative crystallization on concentrated water obtained after nanofiltration so as to obtain anhydrous sodium sulfate. The method may further comprise a step of carrying out reverse osmosis treatment on yielded water obtained after nanofiltration and using yielded water obtained after reverse osmosis treatment as diluting water in nanofiltration of the raw water. The method may also comprise a step of carrying out secondary nanofiltration on yielded water obtained after nanofiltration so as to obtain concentrated water and yielded water obtained after secondary nanofiltration, a step of carrying out reverse osmosis treatment on yielded water obtained after secondary nanofiltration and carrying out evaporative crystallization on concentrated water obtained after reverse osmosis treatment so as to obtain sodium chloride, a step of using yielded water obtained after reverse osmosis treatment as diluting water in nanofiltration of the raw water, and a step of carrying out evaporative crystallization on concentrated water obtained after secondary nanofiltration in the sequence of concentration so as to obtain anhydrous sodium sulfate or subjecting the concentrated water together with next batch of raw water to nanofiltration again . The method provided in the invention can be used for separating and purifying anhydrous sodium sulfate and sodium chloride and for purifying sewage.
Owner:昆明先导新材料科技有限责任公司

Wastewater evaporation concentration process and device system

The invention discloses a wastewater evaporation concentration process and a wastewater evaporation concentration device system. The process comprises the following steps of: delivering softened wastewater to be treated to a mechanical vapor recompression (MVR) system to perform evaporation and concentration, compressing the generated secondary steam and then delivering the compressed steam to an evaporator to recycle, delivering the concentrate to a triple-effect mixed flow forced circulating evaporation crystallization system to perform evaporation and crystallization, performing solid-liquid centrifugal separation on the crystallized concentrate and crystal grains, returning the separated mother solution to a stock solution tank or continuously performing evaporation and crystallization, and reclaiming the separated crystal, wherein the secondary steam generated by evaporation and crystallization is recycled for the evaporation crystallization system. After the wastewater is evaporated and concentrated by adopting the process of mechanical vapor recompression circulating evaporation and triple-effect mixed flow forced circulating evaporation crystallization, the wastewater does not need to be discharged to the ground water area, and the wastewater is discharged in a form of steam or closed and embedded in a form of sludge or the like, so the purpose of zero discharge of the wastewater can be fulfilled; and the process system has high heat efficiency, low energy consumption, energy conservation, great reduction in running cost, low temperature difference, low corrosion, difficult scale formation and long equipment service life.
Owner:华电水务工程有限公司 +1

Resource technology and system for separating salt from high-salinity wastewater

The invention discloses a zero-drainage technology for recycling crystallizing salt from high-salinity wastewater and a treatment system thereof. The treatment system comprises a tubular microfiltration system, a weak acid resin hardness removal system, a nanofiltration membrane salt separating system, a nanofiltration concentrated water oxidizing system, a nanofiltration concentrated water sodiumsulfate evaporating and crystallizing system, a sodium sulfate freezing and crystallizing system and the like. The zero-drainage technology has the advantages that the pretreated wastewater is subject to nanofiltration primary salt separating, the salt component in the produced water is mainly sodium chloride, the sodium chloride with purity no lower than 98.5% is obtained by membrane concentration, evaporating and crystallizing, and the sodium sulfate with purity 99.1% or more is produced by MVR (mechanical vapor recompression) crystallizing after concentrated water oxidizing; a mother liquid after evaporating and crystallizing of sodium sulfate and a mother liquid after nanofiltration evaporating and crystallizing are mixed and frozen, so as to obtain mirabilite, and the mirabilite is converted into anhydrous sodium sulfate after sodium sulfate evaporating and crystallizing; at the premises of ensuring quality, the whole recycling rate of salt reaches 90% or above; finally, a smallamount of mother liquid is sprayed, dried and cured, and the zero-drainage effect of wastewater is realized.
Owner:侯新春 +1

Method for preparing nano alumina fiber film material

The invention relates to a technology of preparing nano alumina fiber membrane material by electrostatic spinning, comprising: 1. the configuration of sol gel electrostatic spinning liquid. Pouring polyvinyl pyrrolidone into ethanol solvent and stirring thereof with high speed until completely dissolved; getting the polyvinyl pyrrolidone ethanol solution with the concentration of 5-8wt%, then, mixing the solution with the aluminum chloride solution with the concentration of 10-30wt%, wherein, the weight ratio between the polyvinyl pyrrolidone and the aluminum chloride is 3:1-1:1, stirring for one hour. 2. Electrostatic spinning. The prepared sol gel spinning liquid is injected into the electrostatic spinning device and electrostaticly spinning thereof is injected into aluminum chloride / polyvinyl pyrrolidone nano fiber membrane under the voltage of 25-35kv, the extrusion speed of 1-10ml / min and the reception distance of 10-20cm. 3. calcining. At last putting the prepared aluminum chloride / polyvinyl pyrrolidone nano fiber membrane into a muffle furnace and raising the temperature to 450-1100 DEG C with the speed of 50 DEG C / h, calcining for five hours and getting amorphous, Gamma type or Alpha type aluminum oxide fiber membrane. The nano aluminum oxide fiber membrane made by the invention is a catalyst and the carrier material of the catalyst and high temperature resistance filtration material with high specific surface area, good thermal stability and excellent mechanical properties. Furthermore, the material can be widely applied in fields such as the insulating materials and reinforced composites of space shuttle and high temperature boiler.
Owner:TIANJIN POLYTECHNIC UNIV

Method for separating magnesium from lithium and extracting lithium from brine

InactiveCN101538057ASolve the difficult technical problems of filtrationSimple technical processMultistage water/sewage treatmentSolution crystallizationFiltrationHigh energy
The invention provides a method for separating magnesium from lithium and extracting the lithium from high magnesium-lithium ratio brine (brine from a saline lake, from underground and from an oil-gas field). The method comprises: sodium salt and potassium and magnesium mixed salt are separated from the brine by evaporation of a saltpan; after boron extraction, sodium hydroxide is used for precipitating Mg<2+> from obtained old brine, and crystallized Mg(OH)2 is obtained by modification and precipitation condition control; filtration and separation are carried out to remove the Mg(OH)2 to realize separation of magnesium and lithium; after filtered mother solution is vaporized and concentrated for 2-4 times, Na2SO4 and NaCl are separated by crystallization, and pure caustic soda can be added to form lithium carbonate from lithium; or the operation of further evaporation is carried out until Na2SO4 and NaCl are separated by multiple times of natural evaporation or forced evaporation concentration and multiple times of cooling crystallization; the operations of evaporation and concentration are carried out until LiCl saturation, and LiCl products can be prepared after the operation of cooling crystallization is carried out. Compared with the prior art for separating the magnesium from the lithium and extracting the lithium from the brine, the method obtains the crystallized Mg(OH)2 by modification and precipitation condition control, solves the existing technical problem of hard filtration of Mg(OH)2, solves the defects of high energy consumption, complex process and high cost of the existing calcination method, and solves the fundamental defects of low Li<2+> recovery ratio and complex technical process of the traditional precipitation method. The Li<2+> recovery ratio ranges from 85-93%, Mg<2+> removal ratio is more than 99.5%, and the method solves the problem of extracting Li<+> and Mg<2+> from high-magnesium and low-lithium brine with Mg<2+> / Li<+>>=20 mass ratio.
Owner:钟辉

Comprehensive utilization method of high-concentration waste saline water containing Na<+>, Ka<+>, NH<4+>, Cl<->, SO4<2-> and NO<3-> in coal chemical industry

The invention relates to a comprehensive utilization method of high-concentration waste saline water containing Na<+>, Ka<+>, NH<4+>, Cl<->, SO4<2-> and NO<3-> in the coal chemical industry. After the high-concentration waste saline water is subjected to softening for impurity removal and subjected to coagulation sedimentation to remove COD (chemical oxygen demand), the water is concentrated by 20%-30% through an air cooler; then, the water enters second and third concentration systems and a salt mixture recovery system, and sodium sulfate, sodium chloride and sodium nitrate and potassium sulfate mixed salt are concentrated and separated with a multi-effect negative pressure evaporation method; condensed water is recycled. The purity of separated sodium chloride and the purity of separated sodium sulfate are higher than 99%, and sodium chloride and sodium sulfate can be directly sold. The method has remarkable economic benefits and social benefits, is environment-friendly, comprehensively reaches the standard and can be used for comprehensive treatment and utilization of similar high-concentration saline water in other industries, so that the environment-friendly and energy-saving requirements for full utilization of resources are met.
Owner:和易中诚环保科技有限公司

Method for preparing thiocyanate and sulfate by utilizing desulfuration waste liquor in coking plant

The invention relates to a method for preparing thiocyanate and sulfate by utilizing desulfuration waste liquor in a coking plant, which comprises the following steps of: preparing saturated solution of copper sulfate, mixing the saturated solution with desulfuration waste liquor, and heating and stirring; performing solid-liquid separation to obtain a solid and sulfate liquid; adding aqueous alkali into the solid, heating at the temperature of between 50 and 98 DEG C, and stirring and reacting for 10 to 120 minutes; performing solid-liquid separation on slurry obtained by heating; concentrating the obtained liquid, and freezing for crystallizing and drying to obtain a high-purity thiocyanate product; calcining the obtained solid, adding solution of sulfuric acid, and stirring to produce the copper sulfate for circular use; adding activated carbon into the sulfate liquid, and aerating and oxidizing to purify sulfate; and concentrating the sulfate, and crystallizing and drying to obtain a high-purity sulfate product. The method solves the problem of pollution of the desulfuration waste liquor to the environment, and simultaneously, pollutants can become value products through the production of the high-purity thiocyanate product and the high-purity sulfate product.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Coking wastewater membrane concentration salt separation zero-emission treatment system and coking wastewater membrane concentration salt separation zero-emission treatment method

The invention belongs to the technical field of water treatment, and particularly relates to a coking wastewater membrane concentration salt separation zero-emission treatment system and a coking wastewater membrane concentration salt separation zero-emission treatment method. The method comprises: coking wastewater pretreatment, wherein the coking wastewater pretreatment comprises full-automaticsand filtration, active carbon adsorption regeneration, ultra-filtration and softening; membrane salt separation and concentration treatment, wherein the membrane salt separation and concentration treatment comprises low-pressure nano-filtration, high-pressure nano-filtration, purification nano-filtration and reverse osmosis treatment; and concentration treatment, fluorine and silicon removal, electrodialysis concentration and evaporative crystallization, wherein an industrial-grade sodium chloride product with a purity of more than 92% is obtained, a sodium sulfate concentrated solution enters a freezing crystallization device to generate mirabilite, the mirabilite is heated and melted and then enters an evaporation crystallization, centrifugation and drying system, and an industrial-grade sodium sulfate product with a purity of more than 95% is obtained. According to the invention, with the system and the method, the zero discharge of coking wastewater is achieved, and the process technology is an innovative coking wastewater zero discharge process at home and abroad.
Owner:BAOWU CHARCOAL MATERIAL TECH CO LTD

Comprehensive extraction method of ferro-silico-aluminum in gangue

The invention discloses a comprehensive extraction method of ferro-silico-aluminum in gangue, comprising the following steps of: using gangue as a raw material, crushing, grinding, activating, carrying out acid leaching, filtering, neutralizing free acid in the acid leaching filtered solution by the use of active slag, filtering to obtain a neutralized acid leaching solution, adding a sodium carbonate solution into the neutralized acid leaching solution, adjusting pH value, separating iron and aluminium to obtain hydrous iron oxide, aluminium hydroxide and a by-product sodium sulphate, adding sodium sulphate and coke into the acid leaching slag which has undergone acid leaching and filtration, carrying out a high-temperature melt reaction to recover silicon so as to prepare soluble glass, simultaneously recovering sulfur dioxide to prepare sulfuric acid, reusing sulfuric acid for the acid leaching treatment, diluting the soluble glass by the use of a sodium carbonate solution, carrying out carborization to obtain white carbon black, and reusing the carbonating solution for iron-aluminium separation. The method provided by the invention has characteristics of wide application range of the raw material gangue, high comprehensive recovery rate, no output of by-products, less residue amount and the like, provides a novel technological process for high-efficiency recovery of ferro-silico-aluminum from gangue, and expands the ways of gangue application.
Owner:KUNMING UNIV OF SCI & TECH +1

Sodium sulfate and sodium chloride mixed wastewater separation method and separation apparatus thereof

The invention relates to a sodium sulfate and sodium chloride mixed wastewater separation method and a separation apparatus thereof. The separation method comprises the following steps: increasing the sodium chloride content of sodium sulfate and sodium chloride mixed wastewater to precipitate parts of sodium sulfate, evaporating the mixed wastewater to increase the concentration in order to respectively crystallize the evaporated wastewater to precipitate sodium chloride and sodium sulfate mixed crystals, returning the obtained wastewater, mixing and dissolving the returned wastewater in the new sodium chloride content of sodium sulfate and sodium chloride mixed wastewater, and precipitating sodium sulfate crystals and sodium chloride crystals step by step to finally realize sodium sulfate and sodium chloride separation. The quantity of energy consumed in the evaporation mode treatment of wastewater in the method is same to the quantity of energy consumed in the evaporation mode treatment of wastewater in the prior art. The method and the apparatus avoid the problem of generation of a large amount of solid wastes after wastewater evaporation in the prior art, realize sodium sulfate and sodium chloride separation and purification without adding other reagents, truly realize zero discharge, and allow separated sodium sulfate and sodium chloride to be highly pure and to be directly used and sold as industrial products.
Owner:上海亿华科技有限公司 +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products