Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

957results about How to "Improve the strengthening effect" patented technology

Device for strengthening laser cladding layer by ultrasonic impact and method thereof

The invention relates to a device for strengthening a laser cladding layer by ultrasonic impact and a method thereof. A conventional powder feeding type laser cladding method is used for preparing the laser cladding layer on the surface of a cladding base material; after one path of laser cladding is finished, the ultrasonic impact is used for playing effects on the laser cladding layer; when a plurality of paths and layers of laser cladding are carried out, the laser cladding and the ultrasonic impact are alternatively carried out. According to the device and the method disclosed by the invention, the laser cladding layer is obviously strengthened to refine tissues of the laser cladding layer and eliminate residual stress in the laser cladding layer; when the ultrasonic impact is used for playing the effect on the laser cladding layer, a plastic deformation layer with a certain depth is formed in the laser cladding layer; grains and crystal lattices in the plastic deformation layer are distorted to form high-density dislocation so that dendritic crystals in condensation tissues of the laser cladding layer are crushed and are dispersed into the laser cladding layer to form small crystal nucleuses which are uniformly distributed and refine the grains; meanwhile, the ultrasonic impact is used for planting pressing stress into the laser cladding layer to counteract pulling stress in the laser cladding layer and eliminate the residual stress in the laser cladding layer.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Silicon carbide reinforced aluminum-based composite material and its preparation method

The invention relates to a silicon carbide reinforced aluminum-based composite material and its preparation method. The composite material is characterized by being composited by micron-scale and nano-scale beta-phase silicon carbide spherical particles and an aluminum substrate, with the beta-phase silicon carbide spherical particles distributed in the aluminum substrate to form a synergistic reinforced phase. The preparation method is summarized to be mainly composed of: pre-preparing beta-phase silicon carbide spherical particles, adding aluminum substrate powder and the beta-phase silicon carbide spherical particles accounting for 0-25wt% of the composite material into a ball mill for ball milling treatment, and conducting cold press molding, sintering, as well as air hot pressing sequentially, and finally carrying out hot extrusion molding to obtain a molded product of the composite material. Specifically, the particle size of the aluminum substrate powder is 1micrometer to 100micrometers. The technical scheme of the invention innovatively uses spherical particulate beta-phase silicon carbide and makes use of the synergistic reinforcement effect of the micron and nano-silicon carbide particles, substantially improves the strength, toughness, abrasion resistance and others of the aluminum-based composite material. The preparation process is simple, and the cost input is effectively reduced.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI +1

Aluminium alloy conductor for automotive wires and manufacturing method thereof

The invention discloses an aluminium alloy conductor for automotive wires, which has the advantages of high heat resistance, conductivity, tensile strength, extensibility and fatigue resistance, and a manufacturing method thereof. The alloy contains 0.3 to 0.8 weight percent of iron, 0.05 to 0.20 percent of silicon, 0.1 to 0.5 weight percent of magnesium, 0.1 to 0.3 weight percent of copper, 0.001 to 0.04 weight percent of boron, 0.001 to 0.04 weight percent of zirconium, 0.001 to 0.04 weight percent of yttrium, and the balance of aluminium and inevitable impurities, wherein one or two elements, except the aluminium and the inevitable impurities, account for 0.1 to 2.0 weight percent. The manufacturing method comprises the following steps of: adding the iron, silicon, magnesium, copper, boron, zirconium, yttrium and aluminium into a smelting furnace; smelting, and casting and rolling; performing intermediate annealing treatment; drawing into aluminium alloy filaments with the diameterof 0.5mm; and stranding into wire cores, and performing annealing treatment. The conductor prepared by the method has the tensile strength of 210MPa and above, the elongation at break of over 10 percent, the conductivity of over 58 percent, and excellent heat resistance and flexibility.
Owner:安徽中青欣意铝合金电缆有限公司

Oxide dispersion strengthened (ODS) steel preparing method and martensitic steel

The invention provides an oxide dispersion strengthened (ODS) steel preparing method and martensitic steel. The oxide dispersion strengthened steel preparing method includes the steps that iron oxides are added into a casting mould, a proper number of rare earth elements are added into a fully deoxidized molten steel, the mixture is rapidly cast into the casting mould, and the ODS steel is obtained through the reaction between the rare earth elements and the iron oxides. The martensitic steel is obtained by performing hot forging, hot rolling, hot machining and hot treatment on the ODS steel prepared through the method. The ODS steel prepared through the method is high in hardenability, the residual austenitic content is very low, and a full martensite structure can be obtained. W, V and Ta are strong carbide forming elements and have a remarkable strengthening effect, and the mechanical property is obviously higher than that of steel prepared through a traditional smelting technology. Meanwhile, the ductile-brittle transition temperature (DBTT) value is minus 80 DEG C and minus 90 DEG C, the good toughness of the traditional smelting technology is well inherited, and meanwhile good anti-radiation performance is achieved. By means of the ODS steel preparing method, the demands for preparing ODS steel in batches with stability, short process and low cost can be met.
Owner:UNIV OF SCI & TECH BEIJING

Method for preparing high-strength high-toughness magnesium alloy plate strip

The invention relates to a method for preparing a high-strength high-toughness magnesium alloy plate strip by cold deformation and artificial ageing, comprising the following steps of: placing a magnesium alloy in a thermal deformation state or a solid solution magnesium alloy cooled by water quenching after temperature preservation at the temperature of 400-540 DEG C for 1-15 hours into liquid nitrogen to be subjected to subzero treatment and cold deformation, or directly carrying out cold deformation on the original magnesium alloy in the thermal deformation state or the solid solution state, wherein the deformation is controlled to be 5-20%; and finally preserving the temperature of 100-250 DEG C for 5-100 hours and then carrying out artificial ageing, thus the high-strength high-toughness magnesium alloy is obtained. The method provided by the invention is reasonable in design, the equipment requirement is simple, the operation is convenient, and the problems that the cost is high, a large magnesium alloy is difficult to prepare and large-scale application is difficult to realize in the traditional high-strength high-toughness magnesium alloy preparation process can be effectively solved; and magnesium alloy plate strips with excellent comprehensive mechanical properties such as strength, stretchability and the like, thus the method has a good industrial application prospect.
Owner:CENT SOUTH UNIV

Nitrified sludge efficient enriching culture system based on membrane bioreactor and method

The invention relates to a nitrified sludge efficient enriching culture system based on a membrane bioreactor and a method. The system comprises an ammonia nitrogen and trace element storage tank, wherein a stirrer is arranged inside the ammonia nitrogen and trace element storage tank, the ammonia nitrogen and trace element storage tank is connected with the membrane bioreactor through a liquid conveying pump, a pH regulating liquid storage tank is also connected with the membrane bioreactor through the pH regulating liquid conveying pump, and a water inlet connected with a water inlet pump, a water outlet connected with a water outlet pump and a sludge discharge opening connected with the sludge discharge pump are respectively arranged on the membrane bioreactor. The system and the method provided by the invention have the basic characteristic that the membrane bioreactor system is used for realizing the semi-sealed enriching culture on the nitrified sludge. Compared with the fermentation culture of nitrobacterium agents, the system and the method provided by the invention have the advantages that the nitrobacterium culture cost is greatly reduced, the thorough separation of the nitrobacterium and the culture substrate is realized, and the unnecessary loss of the nitrobacterium in the culture process is effectively avoided.
Owner:YANGTZE DELTA REGION INST OF TSINGHUA UNIV ZHEJIANG

Carbonization reinforced regenerated aggregate, and preparation method and applications thereof

The invention discloses a carbonization reinforced regenerated aggregate, and a preparation method and applications thereof, and belongs to the technical field of building material. The preparation method comprises following steps: building garbage is crushed so as to obtain uniform aggregate particles; cement and admixture fine powder are weighted for uniform mixing so as to obtain a surface coated material; the prepared aggregate particles and the surface coated material are mixed, and are introduced into a granulator, water is sprayed uniformly for granulation so as to obtain a coated aggregate; the coated aggregate is introduced into a sealed environment or the natural environment for pre-curing; an aggregate obtained through pre-curing is introduced into a carbonization device for carbonization treatment so as to obtain the carbonization reinforced regenerated aggregate. The preparation method is adopted to prepare the light aggregate, so that aggregate light weight and high strength are achieved, aggregate cylinder compressive strength can be as high as 13.0MPa, and is higher than the using standard cylinder compressive strength 6.5MPa of common light aggregate. The production technology is simple; resource utilization of solid waste is realized; adsorption immobilization of carbon dioxide is realized; sintering is not needed; and low carbon emission and environment protection are realized.
Owner:NANJING UNIV OF TECH

Heat treatment technology for improving high-temperature tensile ductility of Ni-Fe-Cr based deformation high-temperature alloy

ActiveCN106834990AImprove grain boundary strengthImprove tensile plasticitySolution treatmentCarbide
The invention discloses a heat treatment technology for improving high-temperature tensile ductility of Ni-Fe-Cr based deformation high-temperature alloy. The technology includes the steps that heat preservation lasts for 0.5-2h within the temperature range of 1050-1200 DEG C for performing solution treatment; the temperature is lowered to 20-150 DEG C below a gamma' phase precipitation temperature from the solution temperature at the speed of 0.1-20 DEG C / min, and air cooling is conducted to an indoor temperature after heat preservation lasts for 0.5-4h; and heat preservation is performed for 4-30h at the temperature 150-350 DEG C below the gamma' phase precipitation temperature, and air cooling is conducted again to the indoor temperature. According to the heat treatment technology, the method with high-temperature solution, slow cooling and low-temperature aging combined is adopted, the grain size of an obtained alloy structure is moderate, a bent sawtooth crystal boundary is formed among grains, and M23C6-type carbide is evenly distributed on the crystal boundary; and the crystal boundary has a good reinforcement effect under the high-temperature condition, and the high-temperature tensile ductility of the alloy is high.
Owner:HUANENG POWER INT INC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products