Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

637 results about "Molecular beam epitaxy" patented technology

Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. The MBE process was developed in the late 1960s at Bell Telephone Laboratories by J. R. Arthur and Alfred Y. Cho. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the development of nanotechnologies. MBE is used to fabricate diodes and MOSFETs (MOS field-effect transistors) at microwave frequencies, and to manufacture the lasers used to read optical discs (such as CDs and DVDs).

Annular semiconductor laser of vertical coupling structure and preparing method thereof

The invention discloses an annular semiconductor laser of a vertical coupling structure and a preparing method thereof. An annular active resonator cavity is any one closed loop composed of ridge type waveguide and strip type waveguide, a P type electrode and an N type electrode are arranged on the annular active resonator cavity, laser light in the annular active resonator cavity is coupled to strip type straight waveguide through a vertical coupler, and the strip type straight waveguide outputs the laser light. An N type lower wrapping layer, a first gradual-change refractive index limiting layer, a first barrier layer, a multiple quantum well active layer, a second barrier layer, a second gradual-change refractive index limiting layer, a P type upper wrapping layer and a P type contacting layer which have preset thicknesses and concentration are successively formed by means of a metal organism chemical vapor deposition or molecular beam epitaxy method. A plurality of epitaxial layers are etched by using a SiO2 image as a mask, the etching depth is less than or equal to a first height and greater than or equal to a second height, and the annular active resonator cavity is transferred to a chip. The obtained annular semiconductor laser has the advantages of being simple in process, low in cost, stable in performance of parts, high in reliability and the like.
Owner:TIANJIN UNIV

Platinum diselenide crystal material and preparation method thereof

The invention discloses a platinum diselenide crystal material and a preparation method thereof. The preparation method comprises the following steps: 1) under a vacuum environment, evaporating and depositing a proper amount of high purity selenium on a metal platinum substrate; and 2) carrying out an annealing treatment, so that selenium atoms covering the surface of the substrate and platinum atoms on the substrate interact to form a two-dimensional ordered crystalline state membrane structure in a sandwich arrangement of selenium-platinum-selenium so as to obtain the platinum diselenide crystal material. The inorganic two-dimensional crystalline state material is a new member of a transitional metal disulfide compound family, expands the field of research on non-carbon based two-dimensional crystal materials, and has a wide application potential in future information electronics and apparatus development and research. According to the method disclosed by the invention, the platinum diselenide two-dimensional crystalline state material with a big area and a high quality is grown on a molecular beam epitaxial method, so that the electronic properties of the platinum diselenide crystalline state material and related applications and development are favorably researched.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Creation of thin group ii-vi monocrystalline layers by ion cutting techniques

Expungement ions, preferably including hydrogen ions, are implanted into a face of a first, preferably silicon, substrate such that there will be a maximum concentration of the expungement ions at a predetermined depth from the face. Subsequently a monocrystalline Group II-VI semiconductor layer, or two or more such layers, is / are grown on the face, as by means of molecular beam epitaxy. After this a second, preselected substrate is attached to an upper face of the Group II-VI layer(s). Next, the implanted expungement ions are used to expunge most of the first substrate from a remnant thereof, from the grown II-VI layer, and from the second substrate. In another embodiment, a group II-VI layer is grown on a first substrate silicon and an ionic implantation is conducted such that a maximum concentration of expungement ions occurs either in the silicon substrate at a predetermined depth from its interface with the II-VI layer or in the first Group II-VI semiconductor layer at a predetermined depth from the top face of the Group II-VI semiconductor layer. Thereafter all of the first substrate is expunged from the rest of the workpiece. Thin monocrystalline Group II-VI semiconductor structures may thus be mounted to substrates of the fabricator's choice; these substrates may be semiconductors, integrated circuits, MEMS structures, polymeric, metal or glass, may be flexible and may be curved.
Owner:EPIR TECH INC

Three-mesa p-Pi-n structured III-nitride semiconductor avalanche photodetector and preparation method thereof

InactiveCN104282793AAvoid premature breakdownSolve the problem of reverse premature breakdownFinal product manufactureSemiconductor devicesPhotodetectorElectrode Contact
The invention relates to the technical field of detectors, in particular to a three-mesa p-Pi-n structured III-nitride semiconductor avalanche photodetector and a preparation method of the three-mesa p-Pi-n structured III-nitride semiconductor avalanche photodetector. The three-mesa p-Pi-n structured III-nitride semiconductor avalanche photodetector comprises a substrate, a buffer layer, an n-type doping nitride ohmic electrode contact layer, a Pi-type nitride active layer, a p-type doping nitride layer, a p-type heavy-doping nitride ohmic contact layer, n-type ohmic contact electrodes and a p-type ohmic contact electrode, wherein the buffer layer, the n-type doping nitride ohmic electrode contact layer, the Pi-type nitride active layer, the p-type doping nitride layer and the p-type heavy-doping nitride ohmic contact layer are sequentially grown on the substrate through epitaxial growth methods such as a molecular beam epitaxial method or an organometallic chemical vapor deposition epitaxial method; the n-type ohmic contact electrodes are manufactured on the n-type layer, and the p-type ohmic contact electrode is manufactured on the p-type layer. The three-mesa p-Pi-n structured III-nitride semiconductor avalanche photodetector can solve the problems that a traditional p-i-n structured device leaks a large number of currents and the edge of the traditional p-i-n structured device can be broken through easily in advance; moreover, a three-mesa structure conducts double-suppression protection on edge electric fields of a strong electric field region and a weak electric field region of a p-Pi-n structured device, so that the edge electric field is effectively prevented from being broken through in advance.
Owner:SUN YAT SEN UNIV

Macrolattice mismatch epitaxial material buffer layer structure containing superlattice isolated layer and preparation thereof

The invention relates to a macrolattice mismatch epitaxial material buffer layer structure containing a superlattice isolated layer and preparation thereof. N layers of strain-free superlattice isolated layer materials are inserted in a component gradual change buffer layer, wherein n is a natural number and is not smaller than 1 and not larger than 5. The preparation process comprises the following steps of: firstly, determining the parameters of growth temperature, beam source furnace temperature and other parameters; and then sequentially and alternately growing buffer layers with gradually increased strain capacities and strain-free superlattice isolated layer materials on a substrate by adopting a molecular beam epitaxy method until finishing the growth of a buffer layer reaching an expected strain capacity. The material contains the superlattice isolated layer and can ensure that relaxation can quickly and effectively occur to a macrolattice mismatch epitaxial material to release stress in the buffer layer so as to reduce the dislocation density of the epitaxial material on the buffer layer. Moreover, the uninterrupted growth of the material is carried out by adopting a conventional molecular beam epitaxy method, thus the invention has the advantages of easy control of operations, low cost, environmental protection, and the like.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products