Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

370 results about "Nicotinamide adenine dinucleotide" patented technology

Nicotinamide adenine dinucleotide (NAD) is a cofactor that is central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD⁺ and NADH respectively.

Preparation method and application of three-dimensional graphene electrode for electrochemical biosensor

The invention discloses a preparation method and application of a three-dimensional graphene electrode for an electrochemical biosensor. The preparation method comprises the following steps of: fixing spongy graphene in which industrially produced foam nickel is taken as a substrate and which has a three-dimensional structure and is synthesized through chemical vapor deposition on a glass or quartz sheet; connecting the spongy graphene with the three-dimensional structure and a wire by using a silver conductive adhesive; and coating organic silica gel on a connection point of the metal wire and the graphene for insulation to obtain a spongy graphene electrochemical electrode with the three-dimensional structure. The three-dimensional spongy graphene electrode has the outstanding characteristics of high conductivity, high specific surface area, high electrochemical stability and the like, is easily subjected to surface functional modification, and has high detection sensitivity to dopamine and nicotinamide adenine dinucleotide; and a highly sensitive electrochemical biosensor for non-enzymatically and selectively detecting glucose can be obtained after the surface of the electrode is modified by Co3O4.
Owner:南京南工维明新材料科技有限公司

Method and test strips for the measurement of fat loss during weight loss programs

Disposable test strips and a wet chemistry method for measuring each of beta-hydroxybutyrate alone, combined beta-hydroxybutyrate and acetoacetate or total ketone bodies (i.e., beta-hydroxybutyrate, acetoacetate and acetone) in human bodily fluid samples, including but not limited to urine, saliva or sweat are described. The test strips need only be dipped in the sample and can be used by anyone in almost any milieu. Measurement can be made electrochemically, spectrophotometrically, fluorometrically or by comparision to a color standard. Combined acetoacetate and beta-hydroxybutyrate which account for 97-98% of total ketone bodies and may be measured in a cyclic reaction that occurs at pH about 7.0 to about 8.3 with beta-hydroxybutyrate dehydrogenase, (beta-HBD), nicotinamide adenine dinucleotide, a tetrazolium dye precursor and an electron mediator. Using this reaction, false positive results obtained from urine samples taken from patients on sulfhydryl drugs are avoided. beta-HBD from some sources was found to cause false negative results in samples (e.g. urine) containing high chloride content due to chloride inhibition of beta-HBD. Using a simple test for chloride inhibition, it was found that beta-HBD from Alcaligenes is not so inhibited. Using either beta-HBD that is not inhibited by chloride or using 10-20 times the normal concentration of this enzyme eliminates false negatives in samples having substantial chloride content, such as urine, both in the reaction described above and in other reactions disclosed for measuring each of beta-hydroxybutyrate alone, combined beta-hydroxybutyrate and acetoacetate and total ketone bodies, all of which reactions occur in the pH range of about 8.6 to about 9.5.
Owner:GUPTA SURENDRA

N-CQDs (nitrogen-doped carbon quantum dots) with high fluorescence quantum yield as well as preparation method and application of N-CQDs

The invention discloses N-CQDs (nitrogen-doped carbon quantum dots) with high fluorescence quantum yield and a preparation method of the N-CQDs. Alanine is taken as a carbon source, ethanediamine is taken as a surface passivator, and the N-doped carbon quantum dots with high fluorescence quantum yield is successfully prepared with a simple one-step hydrothermal method. Compared with carbon quantum dots synthesized with other protein or amino acid as a carbon source, the nitrogen content of the prepared N-CQDs can reach 61.1%, the average fluorescence lifetime is 4.43 ns, the highest fluorescence quantum yield can reach 46.2% and approaches the fluorescence quantum yield of the carbon quantum dots prepared with a laser ablation method and an electric arc method, and the N-doped carbon quantum dots have low cytotoxicity and excellent biocompatibility and has wide application value in biosensing and bioimaging. The invention further discloses a high quenching effect of NADH (nicotinamide adenine dinucleotide) on fluorescence of the N-CQDs. On the basis that NADH has high quenching effect on fluorescence of the N-CQDs, high-sensitivity fluorescence biosensing for detecting NADH is established, the linear detection range is as low as 80 mu M, and the limit of detection is 25.1 nM.
Owner:NANJING UNIV OF SCI & TECH

Quantitative fructose assay kit and application thereof as well as quantitative seminal plasma fructose assay method

The invention discloses a quantitative fructose assay kit which comprises inorganic acid deproteinized extract A, inorganic base deproteinized extract B, fructose calibration solution, a reagent 1 containing 0.001-0.1mol/L adenosine triphosphate sodium salt, a reagent 2 containing 1-100KU/L hexokinase and 1-100KU/L glucose-6-phosphate dehydrogenase, and a reagent 3 containing 0.001-0.1mol/L nicotinamide adenine dinucleotide. The seminal plasma fructose assay method comprises the following steps: respectively adding the reagent 1 and the reagent 2 to deproteinized seminal plasma and the fructose calibration solution, and mixing uniformly; reacting at the temperature of 10-40 DEG C for 5-120 minutes, then reading the absorbance respectively at the wavelength of 280-400nm; adding the reagent 3 respectively, and mixing uniformly; reacting under the same conditions and reading the absorbance; and calculating the difference between the absorbance read at the first time and the absorbance read at the second time, and comparing or calculating the absorbance of a seminal plasma specimen and the fructose calibration solution to obtain the concentration of the seminal plasma fructose. The kit and the method can be used for quantitative determination of fructose in sera, plasma, body fluid, food and solid extracting solution, the methodology is special, unique, clean and environment-friendly, manual operation and automatic batch assay can be realized, and the kit and the method are easy to popularize and apply clinically.
Owner:BRED LIFE SCI TECH

Lactic dehydrogenase detection kit and preparation method thereof

The invention discloses a lactic dehydrogenase detection kit and a preparation method of the kit. The kit disclosed by the invention consists of a reagent I and a reagent II which are independent each other, wherein the components of the reagent I comprise a biobuffer, a metal ion complex, a lactic dehydrogenase reactive substrate, a surfactant, a lactic dehydrogenase activity activating agent, a preservative and water; and the components of the reagent II comprise a biobuffer, a nicotinamide adenine dinucleotide oxidation state, a surfactant, a preservative and water. The detection kit disclosed by the invention adopts a dual reagent mode to effectively avoid the interference of the nonspecific reaction and synchronously furthest reduce the interference of the sample turbidity, thereby guaranteeing the stable and reliable measurement result; and the detection kit has the advantages of good stability, high precision, wide linear testing range, good repeatability, and strong anti-interference performance and the like. In addition, the detection kit disclosed by the invention does not need to pre-dilute the sample in the detecting process, thereby being convenient for clinical use, simple and fast to operate, and suitable for an automatic biochemical analyzer.
Owner:WUHAN LIFE ORIGIN BIOTECH LTD

Palladium nanoparticle/carbon nanofiber compound, preparation method and application thereof in electrocatalysis

The invention relates to a palladium nanoparticle/carbon nanofiber compound, a preparation method and an application thereof in electrocatalysis. The compound is directly prepared by a one-step electrospinning method. An electrode modified by the compound is used for direct eectrochemical detection on hydrogen peroxide, beta-nicotinamide adenine dinucleotide, dopamine, ascorbic acid and lithic acid. The electrode modified by the compound has the linear range from 0.2 micrometer to 20 millimetres and the detection limit of 0.2 micrometer when being used for the detection on the hydrogen peroxide and has the linear range of 0.2-716.6 micrometers and the detection limit of 0.2 micrometer when being used for the detection on the beta- nicotinamide adenine dinucleotide; and the peak-peak potential differences between the ascorbic acid and the dopamine, the dopamine and the lithic acid as well as the ascorbic acid and the lithic acid are respectively 244mV, 148 mV and 392 mV, thereby showingthat the modified electrode can be used for simultaneous eectrochemical detection of three substances. The compound can be used in the fields of catalysis, fuel cells and sensing.
Owner:CHANGZHOU INST OF ENERGY STORAGE MATERIALS &DEVICES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products