Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

58 results about "Xenon difluoride" patented technology

Xenon difluoride is a powerful fluorinating agent with the chemical formula XeF₂, and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with light or water vapor but is otherwise stable to storage. Xenon difluoride is a dense, white crystalline solid.

End point detection device and end point detection method

The invention discloses an end point detection device used for detecting an end point of a xenon difluoride gas phase etching process. The end point detection device comprises a process cavity, a gas concentration detection device, an end point control device and a gas intake control device, wherein the process cavity is provided with a gas inlet and a gas outlet; the gas concentration detection device is provided at the gas outlet of the process cavity and detects the concentration of a xenon difluoride gas discharged from the process cavity; the end point control device is connected with the gas concentration detection device, calculates the concentration of the discharged xenon difluoride gas according to a detection result of the gas concentration detection device, and compares the concentration with a preset concentration value, and the end point control device generates and sends a control signal if the concentration of the discharged xenon difluoride gas is equal to or greater than the preset concentration value; and the gas intake control device is connected with the gas inlet of the process cavity, constant quantity of the xenon difluoride gas is filled in the process cavity through the gas inlet of the process cavity, and the gas intake device stops filling the xenon difluoride gas into the process cavity after receiving the control signal sent by the end point control device. The invention further discloses an end point detection method.
Owner:ACM RES SHANGHAI

Rubber surface fluorination modification testing device

InactiveCN103630676ASolve the problem of surface fluorination modificationEfficient recyclingMaterial testing goodsTemperature controlEngineering
The invention discloses a rubber surface fluorination modification testing device which mainly comprises an xenon difluoride generating device, a gas flow meter, a pressure meter, a rubber surface fluorination device, a tail gas recovering device, a vacuum pump, a motor, an xenon difluoride recovering device, a throttle valve, a stainless steel pipe, a temperature control panel, a heating plate, a sealing ring, a rubber sample placing frame and other parts. A rubber sample is placed on the rubber sample placing frame and is positioned in the rubber fluorination device, and a defined mount of xenon difluoride gas is introduced to carry out surface fluorination modification on the rubber sample. The rubber fluorination device is vacuumized through the vacuum pump, the throttle valve and the stainless steel pipeline, and an xenon difluoride crystal is heated at certain temperature by using the heating device so as to be sublimated into a gaseous state, the gaseous xenon difluoride enters the rubber fluorination device under the action of a pressure difference, and the rubber sample is subjected to surface fluorination modification. By adopting the rubber surface fluorination modification testing device, rubber is subjected to surface fluorination modification testing under the condition of different temperatures and pressure intensities.
Owner:SHENYANG LIGONG UNIV

Preparation method of fluorinated carbon nitride with high fluorine content

The invention discloses a preparation method of fluorinated carbon nitride with high fluorine content, which comprises the following steps: by using graphite-phase carbon nitride as a raw material, xenon difluoride as a fluorine source and a high-pressure digestion tank as a reaction chamber, carrying out constant-temperature reaction at 200+/-20 DEG C under the condition that the graphite-phase carbon nitride and xenon difluoride are not in contact with each other, thereby obtaining the fluorinated carbon nitride, wherein the mass ratio of xenon difluoride to graphite-phase carbon nitride isgreater than or equal to 10. Compared with the prior art, the method disclosed by the invention takes xenon difluoride as a fluorine source, and compared with fluorine gas, the method is mild in fluorination, relatively stable and safer to operate, xenon difluoride is used as a fluorine source, an existing conventional high-pressure digestion tank can be used as reaction equipment, special customization is not needed, and the production cost is effectively reduced. In addition, xenon difluoride is used as a fluorine source and is matched with a high-pressure digestion tank to be used as reaction equipment to react at the constant temperature of 200+/-20 DEG C, so that the high-fluorine-content doped graphite-phase carbon nitride can be obtained.
Owner:GUANGXI NORMAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products