Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

38results about How to "Co-doping" patented technology

Preparation method of heteroatom doped graphene-based material supported noble metal nanoparticles

The invention provides a preparation method of heteroatom doped graphene-based material supported noble metal nanoparticles. The preparation method comprises steps as follows: preparation of a heteroatom doped graphene-based material: a graphene-based material is subjected to ultrasonic treatment, a heteroatom precursor is added, heteroatom doping is performed in a hydrothermal kettle at the temperature of 150-200 DEG C, and the heteroatom doped graphene-based material is obtained; preparation of the heteroatom doped graphene-based material supported noble metal nanoparticles: the heteroatom doped graphene-based material is dissolved in deionized water and subjected to ultrasonic treatment, a stabilizer and a metal precursor are added, metal in the metal precursor is platinum, palladium, gold or silver, the mixture is continuously stirred, pH is adjusted to range from 8 to 14, a reduction agent is added, the mixture is continuously stirred, and the heteroatom doped graphene-based material supported noble metal nanoparticles are obtained after vacuum drying. The synergistic effect of the heteroatom and the carrier on noble metal is used, the activity and the stability of a catalyst are effectively improved, and a preparation process is simple and suitable for industrial production and has higher economic value.
Owner:SHANGHAI UNIVERSITY OF ELECTRIC POWER

Nickel-based positive electrode material, and preparation method thereof and battery

The invention relates to a nickel-based positive electrode material, and a preparation method thereof and a battery. The composition of the nickel-based positive electrode material is LiaNibCocMndMeM'fO2-g / 2Fg (M is at least one selected from Ti, Zr, Al, Fe, Cr, Si, and Cu; M' is at least one selected from Mg, Ca, Sr, Ba, and W; a is no smaller than 0.95 and no greater than 1.2; b is no smaller than 0.2 and no greater than 0.9; c is no smaller than 0 and no greater than 0.4; d is no smaller than 0 and no greater than 0.4; e+f is greater than 0.05and no greater than 0.2; and g is greater than 0.02 and no greater than 0. 1). Anions and cations are used in co-doping. With a synergistic effect, nickel-based positive electrode material capacity, structural stability and circulation performance are greatly improved. The preparation method at least comprises the 4 steps that: (1) corresponding raw materials are weighed according to the molar ratio consistent with LiaNibCocMndMeM'fO2-g / 2Fg; (2) the raw materials are subjected to wet grinding; (3) slurry obtained by grinding is dried; and (4) the dried material is subjected to solid-phase synthesis under a temperature of 500-1100 DEG C. With the process, the raw materials can be more uniformly dispersed, and the obtained product has the advantages of high capacity and good circulation performance. The process is simple, and has the advantages of low cost and suitability for large-scale industrialized productions. With the process, problems such as complicated process and acid and alkali pollution of a wet chemical precursor preparation method are avoided. The invention also relates to a battery with the material as an active substance.
Owner:CHINA AUTOMOTIVE BATTERY RES INST CO LTD

Preparation method of black phosphorus graphene composite material-loaded noble metal nanoparticles

The invention provides a preparation method of black phosphorus graphene composite material-loaded noble metal nanoparticles. The method comprises the following steps: firstly, preparing a black phosphorus graphene composite material: carrying out ball-milling on a black phosphorus nanometer lamellar material and a graphene nanometer lamellar material under the protection of argon, then respectively washing products with ethanol and water, carrying out suction filtration to obtain the black phosphorus graphene composite material, carrying out vacuum drying on the obtained black phosphorus graphene composite material, and collecting; then, dispersing the black phosphorus graphene composite material into ethanol, carrying out ultrasonic treatment and then adding a stabilizer and a metal precursor; continuously carrying out ultrasonic agitation, adjusting a pH value to 9-11, then adding a reducing agent, continuously stirring, and carrying out vacuum drying to obtain the black phosphorus graphene composite material-loaded noble metal nanoparticles. According to the black phosphorus graphene composite material-loaded noble metal nanoparticles, a black phosphorus graphene composite material carrier is better combined with noble metal, so that the electro-chemical activity and stability of a fuel-cell catalyst are effectively improved; furthermore, a preparation technology is easy to operate, thus being suitable for large-scale production.
Owner:SHANGHAI UNIVERSITY OF ELECTRIC POWER

Preparation method of black phosphorus TiO2 heterojunction structure material loaded precious metal nanoparticle

The invention provides a preparation method of a black phosphorus TiO2 heterojunction structure material loaded precious metal nanoparticle. The preparation method comprises the steps of preparing a black phosphorus TiO2 heterojunction structure material, in which a black phosphorus nanosheet layer material and a TiO2 nanosheet layer material are ball-milled under argon protection, the black phosphorus nanosheet layer material and the TiO2 nanosheet layer material are respectively washed with ethanol and water, and the black phosphorus TiO2 heterojunction structure material is obtained by suction filtration, is dried in vacuum and is collected; and dispersing the black phosphorus TiO2 heterojunction structure material in the ethanol, adding a stabilizer and a metal precursor after ultrasonic processing, continuing to perform ultrasonic stirring, adjusting pH to 9-11, adding a reducing agent, continuing to stir, and obtaining the black phosphorus TiO2 heterojunction structure material loaded precious metal nanoparticle after vacuum drying. The black phosphorus TiO2 heterojunction structure material carrier is combined with precious metal better, and the electrochemical activity and the stability of a fuel cell catalyst are effectively improved; and moreover, the preparation process is easy to operate and is suitable for production on a large scale.
Owner:SHANGHAI UNIVERSITY OF ELECTRIC POWER

Molybdenum and carbon-codoped titanium oxide nanotube array thin film material and preparation method thereof

The invention belongs to the technical field of an environmental material, and particularly relates to a molybdenum and carbon-codoped titanium oxide nanotube array thin film material and a preparation method thereof. The molybdenum and carbon codoping of a titanium oxide nanotube can be realized by introducing molybdenum element into the titanium oxide nanotube formed on a titanium sheet and the surface thereof through alloying, and then introducing carbon element through carbon monoxide atmospheric thermal treatment; in the obtained molybdenum and carbon-codoped titanium oxide nanotube array thin film material, a part of titanium atoms in the titanium oxide nanotube are replaced by molybdenum, a part of oxygen atoms are replaced by carbon, the ratio of the molybdenum atoms to carbon atoms ranges from 0.03 to 0.15, and the ratio of the doped carbon atoms to titanium atoms ranges from 0.01 to 0.09. The thin film material is attached to a titanium alloy substrate, and comprises orderly titanium oxide nanotubes perpendicular to the substrate. The photocatalysis and photo-electrochemical properties of the thin film material in visible light are far higher than those of the traditional titanium oxide thin film material, and the thin film material has excellent application prospects on the aspects of photocatalytically degrading organic matters in water and reducing heavy metal ions.
Owner:ZHANGJIAGANG GREEN TECH ENVIRONMENTAL PROTECTION EQUIP +1

Preparation method of N/S doubly doped metallic carbon compound material

The invention provides a preparation method of an N/S doubly doped metallic carbon compound material. The preparation method comprises the following steps: preparing an organic complex material, namely dissolving dithizone in ethanol, then adding a metal atom precursor, wherein the molar ratio of a dithizone organic ligand to the metal atom precursor is (1-4):1, stirring the mixed solution at the temperature of 30-85 DEG C, and then drying; and then preparing the N/S doubly doped metallic carbon compound material, namely putting the organic complex obtained after drying into a tubular furnace, carrying out heat preservation for 1-12 hours at the temperature of 400-900 DEG C under the nitrogen protection condition, then cooling to room temperature, then carrying out acid pickling, finally activating according to the mass ratio of the material to potassium hydroxide of 1:(2-6), and then washing to be neutral with deionized water, so that the N/S doubly doped metallic carbon compound material is obtained. The preparation method provided by the invention has the advantages that a strong oxidation bridge effect among metal, carbon and hetero atoms is combined, and electrochemical properties of the metallic carbon compound material are effectively improved.
Owner:SHANGHAI UNIVERSITY OF ELECTRIC POWER

Filter screen usable for air purifier and preparation method of filter screen

The invention discloses a filter screen usable for an air purifier and a preparation method of the filter screen. The filter screen comprises a substrate layer and an activity layer, the substrate layer is provided with a modified foam nickel screen coated with a carbon micro-sphere coating, and the activity layer is provided with TiO2 co-doped Pt, Ag, N and F. The preparation method of the filterscreen includes the steps: firstly, performing reaction on the foam nickel screen in sugar solution, and performing drying and roasting to obtain the substrate layer; secondly, soaking the substratelayer into mixed solution of ammonium fluorotitanate, urea and deionized water to perform reaction, drying and roasting to obtain the filter screen with the surface with N and F co-doped TiO2 coatings; dissolving chloroplatinic acid and silver nitrate in distilled water, stirring mixture for 30 minutes at room temperature, adding sodium dodecyl benzene sulfonate to continue to stir mixture for 30minutes, and dripping sodium borohydride solution into solution to obtain impregnation liquid; soaking the filter screen with the surface with N and F co-doped TiO2 coatings into the impregnation liquid to perform reaction and drying to obtain the filter screen. The filter screen is small in air resistance and good in catalytic performance.
Owner:苏州科佳环境科技有限公司

A kind of filter screen that can be used for air purifier and preparation method thereof

The invention discloses a filter screen usable for an air purifier and a preparation method of the filter screen. The filter screen comprises a substrate layer and an activity layer, the substrate layer is provided with a modified foam nickel screen coated with a carbon micro-sphere coating, and the activity layer is provided with TiO2 co-doped Pt, Ag, N and F. The preparation method of the filterscreen includes the steps: firstly, performing reaction on the foam nickel screen in sugar solution, and performing drying and roasting to obtain the substrate layer; secondly, soaking the substratelayer into mixed solution of ammonium fluorotitanate, urea and deionized water to perform reaction, drying and roasting to obtain the filter screen with the surface with N and F co-doped TiO2 coatings; dissolving chloroplatinic acid and silver nitrate in distilled water, stirring mixture for 30 minutes at room temperature, adding sodium dodecyl benzene sulfonate to continue to stir mixture for 30minutes, and dripping sodium borohydride solution into solution to obtain impregnation liquid; soaking the filter screen with the surface with N and F co-doped TiO2 coatings into the impregnation liquid to perform reaction and drying to obtain the filter screen. The filter screen is small in air resistance and good in catalytic performance.
Owner:苏州科佳环境科技有限公司

A kind of nickel-based positive electrode material and its preparation method and battery

The invention relates to a nickel-based positive electrode material, and a preparation method thereof and a battery. The composition of the nickel-based positive electrode material is LiaNibCocMndMeM'fO2-g / 2Fg (M is at least one selected from Ti, Zr, Al, Fe, Cr, Si, and Cu; M' is at least one selected from Mg, Ca, Sr, Ba, and W; a is no smaller than 0.95 and no greater than 1.2; b is no smaller than 0.2 and no greater than 0.9; c is no smaller than 0 and no greater than 0.4; d is no smaller than 0 and no greater than 0.4; e+f is greater than 0.05and no greater than 0.2; and g is greater than 0.02 and no greater than 0. 1). Anions and cations are used in co-doping. With a synergistic effect, nickel-based positive electrode material capacity, structural stability and circulation performance are greatly improved. The preparation method at least comprises the 4 steps that: (1) corresponding raw materials are weighed according to the molar ratio consistent with LiaNibCocMndMeM'fO2-g / 2Fg; (2) the raw materials are subjected to wet grinding; (3) slurry obtained by grinding is dried; and (4) the dried material is subjected to solid-phase synthesis under a temperature of 500-1100 DEG C. With the process, the raw materials can be more uniformly dispersed, and the obtained product has the advantages of high capacity and good circulation performance. The process is simple, and has the advantages of low cost and suitability for large-scale industrialized productions. With the process, problems such as complicated process and acid and alkali pollution of a wet chemical precursor preparation method are avoided. The invention also relates to a battery with the material as an active substance.
Owner:CHINA AUTOMOTIVE BATTERY RES INST CO LTD

Boron-nitrogen co-doped carbon nanotube film and preparation method and application thereof

The invention discloses a boron-nitrogen co-doped carbon nanotube film and a preparation method and application thereof. The preparation method comprises the following steps of: 1) weighing ethanol, ferrocene and thiophene according to a mass ratio of (90-100): (1.3-1.7): (0.5-1.5) to obtain a mixed solution, adding 1-3wt% of boric acid and 2-4wt% of pyridine into the mixed solution, and uniformlydispersing at 40-60 DEG C to obtain a precursor solution, 2) completely sealing a CVD furnace, continuously introducing inert gas to remove air in the furnace, adjusting the temperature of the CVD furnace to 1100-1200 DEG C, and keeping the temperature for 2-5 hours to provide a constant-temperature environment for subsequent growth of the carbon nanotube film, 3) closing the inert gas, continuously introducing H2 as a reaction gas until the whole hearth is filled with H2, injecting the precursor solution obtained in the step 1 into the furnace at a liquid injection rate of 3-8 mL/h by virtueof an ultrasonic atomization device in a uniformly dispersed vaporific droplet manner, and collecting the boron-nitrogen co-doped carbon nanotube film at the bottom of the hearth after 10-30min. Andthe mass specific capacitance of the film is 130-150 F.g<-1>.
Owner:TIANJIN UNIV

Preparation process of single/multi-element doped sodium titanate nanorod array coating

The invention discloses a preparation process of single / multiple-element doped sodium titanate nanorod array coatings. The preparation process is characterized by adopting a hydrothermal (HT) method to prepare different sodium titanate nanorod array coatings on the surface of pure titanium, performing hydrothermal treatment on the coatings again, and achieving single / multiple-element (Mg, Ca, Sr or Zn) doping of nanorod-like sodium titanate in the coatings. The coatings are of double-layer structures and are characterized in that inner layers adjacent to a substrate are dense nanoparticle layers; surface layers are nanorods and are orientated to be nearly perpendicular to the dense nanoparticle layers; no discontinuous interfaces exist between the coatings and the substrate; and the coatings have high bonding strength being 21.0-30.2 N, can be rapidly induced to form bonelike apatite in simulated body fluid environment, and have good biological activity. According to the invention, thepure titanium substrate is subjected to bonelike surface modification from structures and components with reference to human bone; micro-nano structures and trace elements are given to the surfaces of implants; and through synergistic effects of the micro-nano structures and the trace elements, the bone integration effect is improved.
Owner:XI AN JIAOTONG UNIV

Hydroxyapatite nanorod array structured coating co-doped with multiple elements on titanium-based surface and its preparation method and application

The invention belongs to the technical field of titanium-based surface treatment, and specifically relates to a titanium-based surface multi-element co-doped hydroxyapatite nanorod array configurational coating, a preparation method and the application thereof. A micro-arc oxidation-hydrothermal treatment compound method is used, an HA nanorod array configurational coating in which three elementsof strontium, zinc and magnesium are doped is prepared on the surface of pure titanium, and co-doping of five elements such as Sr, Zn, Mg, Si and C of nanorod-like HA in a coating array is realized bycarrying out second hydrothermal treatment method on the coating. The preparation method is simple in technology and low in production cost, the obtained rod-like hydrothermal treatment gets closer to the bionic component of human bone, the coating can be quickly induced in an environment similar to a body fluid to form bone apatite, and the coating has good biological activity. The coating in combination with a micro-nano structure and biological activity elements preferably stimulates a synergetically enhanced biological effect, a novel design thought is provided for the surface modification of a metal implant, and the coating is significant for efficiently promoting osseointegration.
Owner:XI AN JIAOTONG UNIV

A preparation method of heteroatom-doped graphene-based material loaded noble metal nanoparticles

The invention provides a preparation method of heteroatom doped graphene-based material supported noble metal nanoparticles. The preparation method comprises steps as follows: preparation of a heteroatom doped graphene-based material: a graphene-based material is subjected to ultrasonic treatment, a heteroatom precursor is added, heteroatom doping is performed in a hydrothermal kettle at the temperature of 150-200 DEG C, and the heteroatom doped graphene-based material is obtained; preparation of the heteroatom doped graphene-based material supported noble metal nanoparticles: the heteroatom doped graphene-based material is dissolved in deionized water and subjected to ultrasonic treatment, a stabilizer and a metal precursor are added, metal in the metal precursor is platinum, palladium, gold or silver, the mixture is continuously stirred, pH is adjusted to range from 8 to 14, a reduction agent is added, the mixture is continuously stirred, and the heteroatom doped graphene-based material supported noble metal nanoparticles are obtained after vacuum drying. The synergistic effect of the heteroatom and the carrier on noble metal is used, the activity and the stability of a catalyst are effectively improved, and a preparation process is simple and suitable for industrial production and has higher economic value.
Owner:SHANGHAI UNIVERSITY OF ELECTRIC POWER

A preparation method of black phosphorus titanium dioxide heterogeneous structure material loaded noble metal nanoparticles

The invention provides a preparation method of a black phosphorus TiO2 heterojunction structure material loaded precious metal nanoparticle. The preparation method comprises the steps of preparing a black phosphorus TiO2 heterojunction structure material, in which a black phosphorus nanosheet layer material and a TiO2 nanosheet layer material are ball-milled under argon protection, the black phosphorus nanosheet layer material and the TiO2 nanosheet layer material are respectively washed with ethanol and water, and the black phosphorus TiO2 heterojunction structure material is obtained by suction filtration, is dried in vacuum and is collected; and dispersing the black phosphorus TiO2 heterojunction structure material in the ethanol, adding a stabilizer and a metal precursor after ultrasonic processing, continuing to perform ultrasonic stirring, adjusting pH to 9-11, adding a reducing agent, continuing to stir, and obtaining the black phosphorus TiO2 heterojunction structure material loaded precious metal nanoparticle after vacuum drying. The black phosphorus TiO2 heterojunction structure material carrier is combined with precious metal better, and the electrochemical activity and the stability of a fuel cell catalyst are effectively improved; and moreover, the preparation process is easy to operate and is suitable for production on a large scale.
Owner:SHANGHAI UNIVERSITY OF ELECTRIC POWER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products