Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

527 results about "Alkali feldspar" patented technology

The alkali feldspar group are those feldspar minerals rich in the alkali elements, potassium and sodium. The alkali feldspars include albite, anorthoclase, microcline, orthoclase and sanidine. Albite is considered as one of the alkali feldspars according to its chemical composition and it is also the alkali endmember of the plagioclase series. Potassium and sodium feldspars are not perfectly miscible in the melt at low temperatures, intermediate compositions of the alkali feldspars therefore occur only in higher temperatures environments.

Transparent lead-free fritted glaze with low expansion coefficient and preparation method thereof

ActiveCN101717276ADelicate and bright glazeHigh transparencyStrontium carbonateCalcium borate
The invention relates to a transparent lead-free fritted glaze with low expansion coefficient and a preparation method thereof. The fritted glaze comprises the following chemical ingredients of: 59 to 66 percent of SiO2, 10 to 15 percent of Al2O3, 5 to 10 percent of B2O3, 3 to 6 percent of CaO, 4 to 8 percent of MgO, 0 to 3 percent of K2O, 0 to 2 percent of Na2O, 0 to 1 percent of Li2O, 1 to 5 percent of ZnO and 0 to 2 percent of SrO; and the fritted glaze comprises the raw materials of: 10 to 25 percent of kaolin, 15 to 30 percent of quartz, 10 to 25 percent of potassium feldspar, 0 to 8 percent of dolomite, 2 to 6 percent of grammite, 10 to 20 percent of roasted talc, 1 to 6 percent of zinc oxide, 2 to 8 percent of boric acid, 5 to 15 percent of calcium borate, 1 to 5 percent of alumina, 0 to 2 percent of lithium carbonate and 0 to 3 percent of strontium carbonate. The expansion coefficient of the fritted glaze is 3.7-4.5*10-6/DEG C (RT to 500 DEG C), the melted temperature is 1400 DEG C to 1500 DEG C, the glaze firing temperature is 1130 DEG C to 1230 DEG C; and the transparent lead-free fritted glaze has fine and bright glaze surface, high transparency, low expansion coefficient as well as no lead precipitation and is particularly suitable for double-fired hard porcelain body with lower expansion coefficient.
Owner:JINGDEZHEN CERAMIC INSTITUTE

Method for preparing porcelain granules by using fly ash

The invention discloses a method for preparing porcelain granules by using fly ash, which comprises the following steps: putting fly ash, potassium feldspar and quartz as raw materials into a ball mill respectively, dry-milling the raw materials, sieving the milled raw materials respectively, removing iron from the sieved fly ash, putting the fly ash after iron removal, the sieved potassium feldspar and quartz and kaolin into the ball mill, and wet-milling and evenly mixing the materials to form mixed slurry; and granulating the mixed slurry by adopting a pressure type spray granulator, putting the granules into an alumina crucible, placing the alumina crucible into a silicon-carbon rod resistance furnace, sintering and naturally cooling the granules, and taking out the granules to obtain the high-strength porcelain granules. The method for preparing the porcelain granules by using the fly ash is not only favorable for saving natural resources and reducing the production cost, but also favorable for environmental protection. The fly ash does not need to be crushed by a high-power crusher, and the fly ash is mixed evenly. The production process is easy to control, and has little energy consumption; the strength of the prepared fly ash porcelain granules can reach 60 to 120MPa; and the porcelain granules have good properties of light weight, high temperature resistance, corrosion resistance and the like, and can be used as a fracturing propping agent for middle and deep layer oil-gas fields.
Owner:SHAANXI UNIV OF SCI & TECH

Lightweight dry refractory

InactiveCN1370136AClaywaresSlagCordierite
The present invention relates to dry refractory compositions having excellent thermal insulation values. The dry refractory composition also has excellent resistance to molten metal and slag. The composition comprises a lightweight filler material selected from the group consisting of perlite, vermiculite, expanded shale, expanded fire clay, expanded silica-alumina hollow spheres, vesicular alumina, sintered porous alumina, alumina spinel Stone insulating aggregate, ettringite insulating aggregate, expanded mullite, cordierite and anorthite, and a matrix material selected from the group consisting of calcined alumina, fused alumina, sintered magnesia, fused magnesia, Silicon fume, fused silica, corundum, boron carbide, titanium diboride, zirconium boride, boron nitride, aluminum nitride, silicon nitride, sialonite, titanium dioxide, barium sulfate, zircon, sillimanite Group of minerals, pyrophyllite, fire clay, carbon and calcium fluoride. The composition may also contain dense refractory aggregates selected from the group consisting of calcined clay, calcined clinker, minerals of the sillimanite group, calcined bauxite, pyrophyllite, silica, zircon, baddeleyite, cordierite , corundum, sintered alumina, fused alumina, fused quartz, sintered mullite, fused mullite, fused zirconia, sintered zirconia mullite, fused zirconia mullite, sintered magnesia, Fused magnesia, sintered spinel and fused spinel refractory clinker. The composition also contains a heat activated binder and a dust suppressant.
Owner:ALLIED MINERAL PROD

Longquan celadon crackle glaze wine bottle and preparation method thereof

ActiveCN104150873ANovel preparation methodSatisfy the wine storage functionClaywaresPotassiumWine bottle
The invention relates to a longquan celadon crackle glaze wine bottle and a preparation method thereof. Raw material proportions of a blank material, an internal glaze and an external glaze of the bottle are respectively described as follows: the blank material comprises: 40-55% of Longyan kaolin, 15-25% of Longquan china clay, 8-20% of potassium feldspar, 7-15% of quartz and 5-10% of zijin clay; the internal glaze comprises: 65-70% of glaze fruit, 12-25% of glaze ash and 5-10% of zijin clay; and the external glaze comprises: 60-70% of potassium feldspar, 8-15% of quartz, 8-13% of Longyan kaolin, 8-15% of glaze ash, 5-13% of zijin clay and 0.2-0.4% of Fe2O3. On the basis of above raw materials, the longquan celadon crackle glaze wine bottle is prepared by following steps: preparing slurry, performing an injection moulding process to obtain a wet blank; performing a drying process, a trimming process and a biscuiting process to complete a blank manufacturing process; and finally applying the internal glaze and the external glaze and performing a glazing firing process to obtain a finished product of the longquan celadon crackle glaze wine bottle. The bottle is free of stripes on the internal glaze. The external glaze is decorated through crackles. The bottle is good in quality and is free of internal leakage of wine. The method is low in cost and good in effect.
Owner:龙泉市尚唐瓷艺发展有限公司 +1

Process for decomposing potassium feldspar by adopting low-temperature semidry method for comprehensive utilization

The invention relates to potassium feldspar decomposition and comprehensive utilization technology and in particular relates to a process for decomposing potassium feldspar by adopting a low-temperature semidry method for comprehensive utilization. The process comprises the steps of fully mixing potassium feldspar, fluorite and sulfuric acid, then adding the mixture to a converter reactor to react at 180-250 DEG C, separating SiF4 and HF generated through a reaction from a system under the condition of negative pressure, carrying out absorption with ethanol and water solution to prepare white carbon black, recovering fluorine resources in the process from the solution in the forms of ammonium fluoride and other aids by adopting the method of adding ammonia water and applying the recovered fluorine sources to decomposition of potassium feldspar and carrying out a series of processes such as extraction on the solids after a reaction to obtain calcium sulfate whisker, potassium fluosilicate, aluminium hydroxide and ferric sulfate products. Compared with the method for decomposing potassium feldspar by a high temperature method, the process has the advantages that the reaction conditions are mild and the requirements for equipment are lower; the white carbon black is directly prepared through gas hydrolysis, thus avoiding the tedious course from solid phase separation; and the fluorine resources introduced to the decomposition course are recycled by adopting the mode of ammonium fluoride, thus avoiding waste of the fluorine resources.
Owner:LUOYANG FLUORIDE & POTASSIUM TECH +1

Building external wall thermal insulation foamed ceramic material and production method thereof

The invention belongs to the field of building materials, and in particular relates to a building external wall thermal insulation foamed ceramic material and a production method thereof. The building external wall thermal insulation foamed ceramic material is prepared from the following raw materials in part by weight: 60 to 80 parts of industrial solid waste, 15 to 35 parts of fluxing material and 2 to 5 parts of foaming agent, wherein the industrial solid waste is a mixture of two or three of coal gangue, metal tailing and polishing waste in any ratio; the fluxing material is one or a mixture of two of albite and bottle waste glass in any ratio; and the foaming agent is silicon carbide powder. The method comprises the following steps of: mixing the raw materials, grinding, filling in a recrystallized silicon carbide die, feeding into a kiln, firing, naturally cooling, cutting, and inspecting to obtain the foamed ceramic material which meets the building external wall thermal insulation requirement. The building external wall thermal insulation foamed ceramic material has the characteristics of A-level non-inflammability, high thermal insulation and heat preservation performance, energy conservation, environment friendliness and low cost.
Owner:ZHONGCAI HIGH NEW MATERIAL +1

Clay-based heavy metal thermal curing agent and its method for curing heaving metal

The invention discloses a clay-based heavy metal thermal curing agent and its method for curing heavy metal. The clay-based heavy metal thermal curing agent comprises, by weight, 40-60% of clay, 5-15% of iron oxide, 20-30% of fly ash and 15-25% of stone flour. The method provided by the invention comprises the following steps of: uniformly mixing the clay-based heavy metal thermal curing agent and a heavy metal pollutant according to the mass ratio of 1: 5-10: 1, carrying out extrusion moulding on the mixed sample at the pressure of 300-1000Mpa, and sintering the molded sample at the temperature of more than 800 DEG C for 2-5 h to obtain a recycled material. According to the invention, heavy metal is coalesced by absorption of clay to heavy metal; fly ash and stone flour are used to fully mix heavy metal with the clay-based heavy metal thermal curing agent during the mixing process; iron oxide and alumina components in the clay-based heavy metal thermal curing agent react with heavy metal at the temperature of more than 800 DEG C for high-temperature fusion glass transition so as to form a spinel structure; and heavy metal in the form of spinel and feldspar crystal structural components is fixed in the heavy metal thermal curing agent to form the recycled material.
Owner:GUANGDONG INST OF ECO ENVIRONMENT & SOIL SCI

Process for refining hematite type potassium feldspar sand powder

The invention provides a process for refining hematite type potassium feldspar sand powder. The process comprises the following steps: firstly crushing potassium feldspar to be formed into particles, and then adopting dry method ore grinding or wet method ore grinding to obtain sand powder or sand mortar; screening the sand powder prepared through a dry method, and adopting a multistage high magnetic separator to conduct magnetic separation; adopting the magnetic separator to conduct magnetic separation on the sand mortar prepared through wet method sand making, and adopting an electromagnetic separator to conduct magnetic separation on the classified sand mortar, then dehydrating, drying, calcinating iron not removed completely through a boiling furnace to be removed through high magnetic separation, removing the iron still not removed through a pickling manner, and finally separating quartz particles from potassium feldspar through a flotation method so as to obtain the high purity potassium feldspar sand powder. The refining process not only can meet requirements of domestic glass, ceramic and enamel industries on high-brightness potassium feldspar sand powder, but also can conduct industrial production, is environment-friendly, has no waste acid, waste water or waste gas discharge, and is an environment-friendly refining production line.
Owner:HUANGGANG NORMAL UNIV

Green body of red soil ceramic and formula of transmutation glaze of red soil ceramic

The invention relates to a green body of red soil ceramic. The green body of the red soil ceramic is prepared from the following raw materials: red soil, quartz, talc, limestone and dolomite; the transmutation glaze of the red soil ceramic is prepared from the following raw materials: potassium feldspar, albite, calcium oxide, barium oxide, kaolin, quartz powder, sodium tripolyphosphate, titaniumoxide, rutile, zinc oxide and a coloring agent. By addition of other mineral raw materials, chemical raw materials and the like, the physical performance and the chemical performance of the green body are changed and the technical problems that the green body glaze of the red soil product is difficult to combine and the product is loose and fragile are solved; the firing temperature of the glaze is reduced from 1,310 DEG C to 1,230 DEG C, so thatthe firing temperature is reduced by 80 DEG C, the using amount of the fuel and the discharge quantity of harmful gas are reduced, environmental protection is contributed and production cost is greatly saved; and by development of the lead-free transmutation glaze, the lead-free transmutation glaze is suitable for being combined with the green body of the red soil ceramic, so that the problem of pollution to the ceramic decorative environment is solved fundamentally.
Owner:FUJIAN JIAMEI GRP +1

Refractory material for steel tapping hole of converter and preparation method for refractory material

The invention relates to a refractory material for a steel tapping hole of a converter and a preparation method for the refractory material. The technical scheme of the invention is as follows: the preparation method comprises the steps of spraying the surface of a magnesia-carbon brick body with a glaze slip coating with the thickness of 1mm to 2mm, carrying out drying, and carrying out heat preservation, thereby preparing the refractory material for the steel tapping hole of the converter. A preparation method for the magnesia-carbon brick body comprises the steps: mulling magnesia fines, flake graphite fines, expandable graphite, aluminum powder and silicon powder in a high-speed mulling machine, so as to prepare mixed fine powder; and then, mulling fused magnesia granules and artificial graphite granules, adding phenol-formaldehyde resin into the mixture, carrying out mulling, then, adding granulated graphite and the mixed fine powder into the mulled mixture, carrying out mulling, carrying out aging, carrying out shaping, and carrying out standing, thereby preparing the magnesia-carbon brick body. A preparation method for glaze slip comprises the steps of adding water into glass powder, spodumene, potassium feldspar, silicon micropowder, potassium carbonate, SiC fines, chrome green and aluminum dihydrogen phosphate, which serve as raw materials of the glaze slip, and carrying out grinding, thereby preparing the glaze slip. The refractory material for the steel tapping hole of the converter, prepared by the preparation method, has the characteristics that the thermal shock stability is good, the integrity is good, the oxidation resistance is good, the erosion resistance is good, and the life is long.
Owner:WUHAN UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products