Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

79 results about "Alkadienes" patented technology

Acyclic branched or unbranched hydrocarbons having two carbon-carbon double bonds.

Super deep desulfurization combined method for FCC (fluid catalytic cracking) gasoline

The invention relates to a super deep desulfurization combined method for FCC (fluid catalytic cracking) gasoline. The method comprises the steps of (1) with full fraction FCC gasoline and hydrogen as raw materials, enabling the raw materials to contact with protective agents 1 and 2 and a catalyst selectively removing alkadiene in a reactor removing alkadiene under proper conditions so as to remove most alkadiene in full fraction FCC gasoline raw material; (2) after the full fraction FCC gasoline with alkadiene removed in step (1) passes through a gas-liquid separator, dividing the liquid entering a fractionating tower into a light gasoline fraction and a heavy gasoline fraction; (3) enabling the heavy gasoline fraction obtained in step (2) to contact with the catalyst in a selective hydrogen desulfurization reactor under proper operation condition; (4) mixing the light gasoline fraction obtained in step (2) with the heavy gasoline fraction subjected to selective hydrogen desulfurization in step (3), then mixing with new hydrogen, and enabling the mixture to contact with an adsorbent in an adsorbing super deep desulfurization reactor under proper condition so as to remove most sulphur in the gasoline to obtain the ultra low sulphur gasoline product with content of sulphur less than 10ppmw.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Selective hydrogenation method of alkyne and alkadiene in C4 hydrocarbon material flow

The invention provides a selective hydrogenation method of alkyne and alkadiene in a C4 hydrocarbon material flow. The method provided by the invention comprises the following steps of: adding the C4 hydrocarbon material flow containing alkyne and/or alkadiene and hydrogen gas into a hydrogenation reactor which is filled with a load type palladium catalyst; carrying out the selective hydrogenation on the alkyne and/or alkadiene in the C4 hydrocarbon material flow to form olefin when an inlet temperature is in a range of 10-80 DEG C, a mol ratio of the hydrogen gas to the sum of the alkyne and the alkadiene is 1-10 and a reaction pressure is in a range of 0.1-4 Mpa, and removing the olefin, wherein the load type palladium catalyst comprises a carrier, palladium and selective modified components; testing the load type palladium catalyst by utilizing a carbon monoxide adsorption in-situ infrared spectroscopy at the temperature of 40 DEG C to obtain an area ratio of a bridge type absorption peak at the 1930-1990cm<-1> to a bridge type absorption peak at the 1870-1930cm<-1> in an obtained infrared spectrogram is less than 0.2, more preferably less than 0.15. The method provided by the invention has a high selectivity to the selective hydrogenation of the alkyne and the alkadiene in the C4 hydrocarbon material flow and can be operated for a long period.
Owner:CHINA PETROLEUM & CHEM CORP +1

Alkadiene selective hydrogenation catalyst as well as preparation method and application thereof

The invention provides an alkadiene selective hydrogenation catalyst and a preparation method thereof. The carrier of the catalyst adopts carboxyl-functionalized step hole FZIF-8; active components adopts palladium; the active component palladium accounts for 0.1 to 10 percent on the basis of the total weight of the carrier of the catalyst. The invention further provides the preparation method of the alkadiene selective hydrogenation catalyst. A step hole structure is formed in the carrier of the alkadiene selective hydrogenation catalyst, so that carboxyl groups have accessibility, and the active components and the carboxyl groups can interact mutually; the carboxyl groups are contained in the carrier of the catalyst, can anchor the active components, realize high dispersion of the active components, meanwhile prevent agglomeration and drain of the active components during the process, and ensure that the catalyst is high in activity. The catalyst can be applied to the hydrogenation upgrading of FCC petrol, removal of alkadiene in the petrol, and is mild in reaction condition, low in reaction temperature and pressure, and good in selective hydrogenation effect of products.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Preparation method of cu/stainless steel wire mesh catalyst loaded ZSM-5 molecular sieve membrane reactor

The invention relates to the preparation of a catalytic material, and aims to provide a method for preparing a zeolite socony mobile-5 (ZSM-5) molecular sieve membrane reactor loaded with a Cu / stainless steel screen mesh catalyst. The method comprises the following steps of: pretreating a stainless steel screen mesh, and immersing into H2SO4 electrolyte solution to perform anodic oxidation treatment, so that a porous structure is formed on the surface of the stainless steel screen mesh; electrodepositing a Cu component on the surface of the stainless steel screen mesh; adding deionized water into a template agent, stirring at room temperature, and putting into a crystallization kettle, and immersing the Cu / stainless steel screen mesh catalyst into the solution to perform hydrothermal crystallization; and washing by using the deionized water until the solution is neutral, drying, and calcining in an air atmosphere. The ZSM-5 molecular sieve membrane reactor has the advantages of high mechanical strength, low pressure drop, high heat stability, flexible and adjustable aperture and the like, and can be used for various catalytic reactions, such as the selective hydrogenation of alkyne and alkadiene, the preparation of synthesis gas by the partial oxidation of methane, selective catalytic disproportionation of methylbenzene and the like. The novel molecular sieve membrane reactor has a wide application prospect in processes of catalysis, separation and the like.
Owner:ZHEJIANG UNIV

Novel process for reducing energy consumption of catalytic gasoline hydrogenation refining process

The invention belongs to the technical field of petrochemical engineering and discloses a novel process for reducing energy consumption of a catalytic gasoline hydrogenation refining process. The process comprises the flows: removing alkadiene in catalytic gasoline from a catalytic cracking device by virtue of a whole fraction prehydrogenation device, and then feeding a whole fraction reactant into a stabilizing tower to separate light hydrocarbon less than or equal to C4 and excessive hydrogen; feeding stable gasoline at the bottom of the stabilizing tower into a prefrationation tower to separate light gasoline to be de-etherized, wherein the tower top pressure of the prefractionation tower is 0.07MPag, and the tower bottom temperature is 124.4 DEG C; feeding the pump-pressurized circulating material flow at the bottom of the prefractionation tower into a heat exchange at the top of a heavy cut tower; after heat removal, turning heat to the tower bottom, wherein the tower top temperature of the heavy cut tower is 0.56Mpag and the tower top temperature is 156.0 DEG C; and finally, feeding the prefrationated gasoline at the tower bottom of the prefrationation tower into the heavy cut tower to be divided into medium gasoline and heavy gasoline, and separately feeding the medium gasoline and the heavy gasoline to hydrogenation sections in different reaction depths. The process disclosed by the invention can be used for reducing energy consumption to a great extent and has a good energy-saving benefit.
Owner:SOUTH CHINA UNIV OF TECH

Method for preparing white carbon black hybridized material prepared by modification with end chlorosilane polymer

ActiveCN102229759AEffectively control the degree of chlorosilylationGood dispersionPigment treatment with macromolecular organic compoundsPolymer modifiedPolymer science
The invention discloses a method for preparing a white carbon black hybridized material prepared by modification with an end chlorosilane polymer, belonging to the field of synthesis of hybridized materials. The method comprises the following steps of: (1) adding chlorosilane in an anionic reactive polymer, reacting at 30-60 DEG C for 10-40 minutes to obtain the end chlorosilane polymer, wherein the reactive polymer includes styrene polymers, polymers of derivatives of styrene, alkadiene polymers and mixtures of two or more than two of the styrene polymers, the polymers of derivatives of styrene and the alkadiene polymers; (2) mixing white carbon black and the end chlorosilane polymer uniformly, reacting at 25-100 DEG C for 1-48 hours, removing a solvent to obtain an organic/inorganic hybridized material of the end chlorosilane polymer bonded with white carbon black, wherein the mass ratio of the end chlorosilane polymer to the white carbon black is 20:1-1:10. According to the invention, the aggregation of the white carbon black is reduced, affinity between the white carbon black and the polymer is improved, phase separation is reduced obviously, and the prepared material has excellent comprehensive performance. The method is easy to operate, the grafting efficiency is between 50% and 90%, and the prepared white carbon black as an organic hybridized material has the grafting grade being about 0.025:1-9:1.
Owner:BEIJING UNIV OF CHEM TECH

Full-fraction FCC (fluid catalytic cracking) gasoline alkadiene removal/super deep desulfurization composite treatment method and device

The invention provides a full-fraction FCC (fluid catalytic cracking) gasoline alkadiene removal/super deep desulfurization composite treatment method which comprises the following steps: I, enabling full-fraction FCC gasoline and hydrogen as raw materials to contact a alkadiene removal catalyst so as to remove alkadiene in the full-fraction FCC gasoline; II, performing fractionation so as to form a heavy component and a light component; III, performing hydrodesulfurization on the heavy component so as to obtain a low-sulfur heavy component; performing hydrogening adsorption desulfuration on the light component so as to obtain a low-sulfur light component; IV, mixing the low-sulfur heavy component with the low-sulfur light component, thereby obtaining super low-sulfur gasoline of which the sulfur content is less than 10ppmw. As the full-fraction FCC gasoline is subjected to selective hydrogenation to remove alkadiene, and composite treatment for super deep desulfurization is implemented with the combination of techniques of hydrodesulfurization and hydrogening adsorption desulfuration, the sulfur in the full-fraction FCC gasoline can be reduced to be less than 10ppmw, the octane value loss is less than 2 units, and the liquid yield is greater than 99.8%.
Owner:SHAANXI YANCHANG PETROLEUM GRP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products