Disclosed is an ammonia decomposition catalyst which is obtained by subjecting a complex to a heat treatment at a temperature of 360-900 DEG C in a reducing atmosphere, said complex being obtained by coordinating a transition metal to a polymer that is represented by formula (I) and has a molecular weight of 1,000-500,000, and adding activated carbon or a carbon nanotube to the polymer. In the case when a carbon nanotube is added, an alkali metal compound or an alkaline earth metal compound is added to the heat-treated complex. In formula (I), R1 represents H or a hydrocarbon group having 1-10 carbon atoms; R2 and R3 each represents H, a halogen, a nitro group, an acyl group, an ester group, a carboxyl group, a formyl group, a nitrile group, a sulfone group, an aryl group or an alkyl group having 1-15 carbon atoms; X and Y each represents H or OH; Z represents CH or N; R4 and R5 each represents H, OH, an ether group, an amino group, an aryl group or an alkyl group having 1-15 carbon atoms; x represents a real number between 1 and 2; y represents a real number between 1 and 3; and n represents a real number between 2 and 120. The ammonia decomposition catalyst is capable of increasing the amount of transition metal loaded thereon without lowering the dispersion of the transition metal, and is capable of reducing the use amount of catalyst necessary for obtaining desired activity.