Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

354 results about "Lead nitrate" patented technology

Beneficiation method of black and white tungsten mineral

The invention relates to a beneficiation method of black and white tungsten mineral.The method is characterized in that: black and white tungsten mineral through sulfide floatation and magnetic separation deferrization is added with sodium hydroxide, sodium carbonate, sodium silicate and sulphated nascent soap for white tungsten roughing, so as to obtain white tungsten rough concentrate and white tungsten rougher tailings; the white tungsten rough concentrate is added with sodium silicate, sodium hydroxide, sodium sulfide and sulphated nascent soap for white tungsten warming cleaning, so as to obtain white tungsten concentrate and white tungsten warming tailings; the white tungsten rougher tailings and the white tungsten warming tailings are mixed for magnetic separation, so as to obtain black tungsten magnetic separation concentrate and black tungsten magnetic separation tailings; the black tungsten magnetic separation concentrate is added with sodium carbonate, sodium silicate, aluminum sulfate, lead nitrate, sodium fluosilicate, benzohydroxamic acid, sulphated nascent soap and karaffin oil for black tungsten flotation, so as to obtain black tungsten concentrate and black tungsten flotation tailings. The method of the invention is simple in recovery technology, steady in process, high in tungsten recovery rate and low in reagent cost, the used beneficiation reagent does not pollute the environment, and tailings water can meet emission requirement. The invention is applicable to black and white tungsten mineral with WO3 content of .15-2.0% and black and white tungsten proportion of 1:9 to 9:1.
Owner:广东省资源综合利用研究所

Method for separating black and white tungsten bulk flotation rough concentrates

The invention relates to a method for separating black and white tungsten bulk flotation rough concentrates. The method is characterized in that a black tungsten rough concentrate and a white tungsten rough concentrate are obtained by virtue of high-gradient magnetic separation, roughing or roughing and scavenging; black tungsten concentrates and black tungsten cleaner tailings are obtained via carrying out once roughing, three-time scavenging and four-time concentrating on the black tungsten rough concentrate by utilizing sodium fluosilicate, sodium silicate, aluminum sulfate, lead nitrate, benzohydroxamic acid and sulfated nascent soap; white tungsten concentrates and white tungsten cleaner tailings are obtained via carrying out once roughing, three-time scavenging and three-time concentrating on the white tungsten rough concentrate after the white tungsten rough concentrate is heated up and stirred by utilizing sulfated fatty acid soap, sodium silicate, caustic soda and sodium sulfide; cassiterites in the white tungsten cleaner tailings are recovered by a table concentrator. The method related by the invention has the advantages of small mutual interference of black tungsten ore and white tungsten ore in the black and white tungsten bulk flotation rough concentrates, high recovery ratio of black tungsten ore and high and stable quality of the black tungsten ore; and the method is suitable for the black and white tungsten bulk flotation rough concentrates containing 5-40% of WO3.
Owner:INST OF RESOURCES UTILIZATION & RARE EARTH DEV GUANGDONG ACAD OF SCI +1

Method for roughing and tailings-discarding of fine rutile ore by multi-stage floatation

InactiveCN101607230AReduce consumptionEffective deslimingFlotationLead nitrateSilicate minerals
The invention provides a method for roughing and tailings-discarding of fine rutile ore by multi-stage floatation, relating to the technique for roughing and tailings-discarding of fine rutile ore by multi-stage floatation and belonging to the technical field of mineral processing engineering. The method of the invention comprises the following steps: firstly, conducting the reverse floatation of rutile by using sodium oleate as a collector according to the characteristics that aluminum sulfate can inhibit the rutile and activate silicate minerals in varying degrees, so as to effectively deslime in the process of reverse floatation; and then, conducting the forward floatation of rutile by using lead nitrate (or lead acetate) as an activator of rutile and using sodium alkyl hydroxamate and benzyl arsonic acid (or styryl phosphonic acid) as a combined collector according to the characteristic that gangue minerals can be inhibited on a combined basis under the synergistic action of sodium fluorosilicate, carboxymethylcellulose and the residual aluminum sulfate in the ore pulp, briefly, the method of the invention can realize the roughing and tailings-discarding of fine rutile by the multi-stage floatation comprising the following steps: firstly, conducting the reverse floatation by inhibiting the rutile; and then, conducting the forward floatation by activating the rutile. The method of the invention has the advantages that the enrichment ratio and recovery rate of rutile are high, the tailings of rutile ore can be discarded thoroughly and the mineral processing cost of rutile can be greatly reduced.
Owner:KUNMING UNIV OF SCI & TECH

Method for preparing lead nitrate and lead oxide by using lead plaster of waste lead accumulator

The invention discloses a method for preparing lead nitrate and lead oxide by using lead plaster of a waste lead accumulator, which comprises the following steps of: mixing the lead plaster with the granularity of less than 100 microns and 4.5 to 6.5 percent ammonium carbonate solution in a weight ratio of 1: 10-12, then reacting the mixture for 2 to 3 hours at the temperature of between 60 and 100 DEG C with stirring, separating and washing the reaction product, and collecting filter cakes; then mixing the filter cakes, 6 to 12 percent diluted nitric acid and 28 to 30 percent hydrogen peroxide in turn in a weight ratio of 1: 8-10 and 1: 0.05-0.2 respectively, reacting the mixture for 1 to 1.5 hours at the temperature of between 40 and 60 DEG C with stirring, separating and washing the reaction product, and collecting filtrate; concentrating the filtrate till the density of the solution is 1.30 to 1.45 g / cm<3>, adding 65 to 70 percent nitric acid into the solution in a volume ratio of 1: 8-10 and mixing the solution, reacting the solution for 1 to 2 hours with stirring, separating and washing the reaction product, and drying and dehydrating the filter cakes to obtain a lead nitrate product; and performing reaction conversion on the lead nitrate and sodium hydroxide solution, and calcining the reaction product to obtain a lead oxide product. The purities of both the lead nitrate and the lead oxide are more than or equal to 99 percent. The process adopts closed cycle and has no three-waste emission.
Owner:HEFEI UNIV OF TECH +1

Method for treating high-concentration nitrate waste water and municipal sewage through denitrification anaerobic ammonium oxidation SBR

The invention provides a method for treating high-concentration nitrate waste water and municipal sewage through denitrification anaerobic ammonium oxidation SBR, belonging to the field of sewage biotreatment. The method comprises the following steps: firstly, culturing and acclimating denitrifying bacteria population and anaerobic ammonium oxidation bacteria population which have inadequate denitrification characteristic, then inoculating anaerobic ammonium oxidation sludge and denitrifying sludge with high nitrite accumulation rate in the same reactor, leading nitrate waste water and municipal sewage to flow in denitrification anaerobic ammonium oxidation SBR reactor at a certain ratio, performing anaerobic ammonium oxidation to nitrite accumulated during reduction of nitrite and ammonium nitrogen in the municipal sewage to generate nitrogen gas and synchronously removing. According to the method, nitrate generated during anaerobic ammonium oxidation can be reduced through denitrifying bacteria without the condition of adding a carbon source, the nitrogen removal efficiency of a system can be improved, and the effective route for realizing sewage nitrogen removal with high efficiency and low energy consumption can be provided.
Owner:BEIJING UNIV OF TECH

Benefication method for concentrating fine tungsten ore in tailings by warming scheelite

InactiveCN101579653ASimple recycling processThe beneficiation process is stableFlotationWet separationLead nitrateSoluble glass
The invention discloses a benefication method for concentrating fine tungsten ore in tailings by warming scheelite, which is characterized by comprising the following steps in turn: performing desliming and reagent removal; condensing concentrate after desliming and reagent removal, which is added with water, into 26 to 44 percent of pulp density, and controlling the pH of pulp at about 8.5; performing floatation on the fine tungsten ore; adding regulators of sodium fluosilicate, soluble glass, aluminium sulphate and lead nitrate; and adding collecting agents of benzohydroxamic acid and sulfated oleate soap, and performing rough concentration, concentration and scavenging to obtain the fine tungsten ore concentration and fine tungsten tailings. The method has simple recovery process flow, stable benefication process, high tungsten recovery rate, and low cost of reagents; the used benefication reagents do not pollute environment; and tailing water can meet the emission requirement. The method is suitable for the fine tungsten ore, of which the WO3 content is 0.95 to 5.10 percent, the ratio of peanut ore to the scheelite is between 1:9 to 9:1, and the occupancy rate of WO3 metal smaller than 30 microns is more than or equal to 60 percent, and which is subjected to concentration of the tailings by warming the scheelite and then reconcentration of the tailings by a shaker.
Owner:GUANGZHOU RES INST OF NON FERROUS METALS

Ore dressing method of micro-fine particle tantalum-niobium ores

Disclosed is an ore dressing method of micro-fine particle tantalum-niobium ores. The ore dressing method is characterized by including steps of firstly, performing desliming pre-treatment to obtain set sand and micro-mud; secondly, adding an adjusting agent of sodium carbonate, an inhibiting agent of water glass, an activating agent of lead nitrate and collectors of benzohydroxamic acid and hydroxyamino acid to the set sand for once roughing; adding the benzohydroxamic acid and the hydroxyamino acid for once or twice scavenging; adding the water glass for once or twice concentration or blank concentration to obtain tantalum-niobium rough concentrates and flotation tailings; thirdly, performing de-reagent and de-foaming: adding sulfuric acid to the tantalum-niobium rough concentrates, and stirring the mixture until foams are disappeared; and fourthly, performing gravity concentration: subjecting the tantalum-niobium rough concentrates to de-reagent and de-foaming, and subjecting the tantalum-niobium rough concentrates to gravity concentration to obtain tantalum-niobium concentrates and gravity concentration tailings. According to the ore dressing method of the micro-fine particle tantalum-niobium ores, the recovery rate of the micro-fine particle tantalum-niobium ores is increased by over 30%, and the ore dressing method is applicable to primary mud and secondary mud with sizes of -0.037mm in tantalum-niobium ores.
Owner:GUANGZHOU RES INST OF NON FERROUS METALS

Method for recycling gold and micro-fine particle antimony minerals in antimony-containing gold ore flotation tailings

The invention discloses a method for recycling gold and micro-fine particle antimony minerals in antimony-containing gold ore flotation tailings. By the adoption of the method, the technical problem that if the antimony-containing gold ore flotation tailings are subjected to cyanide leaching directly, the cost is high, and the gold recovery rate is low is solved. Meanwhile, efficient recovery of associated antimony minerals can also be achieved. The method is characterized by comprising the steps that the tailings are rated, the tailings with the particle size being larger than 0.038 mm are subjected to regrinding and size mixing, copper sulfate, lead nitrate and ammonia carbonate are added sequentially as a mixed activating agent, sodium n-butylxanthate and ammonium butyl aerofloat serve as a collecting agent, No.2 oil serves as a foaming agent, and gold and the antimony minerals are recycled through flotation; and water is directly added into the tailings with the particle size being smaller than 0.038 mm for size mixing, grinding is not needed, sodium hexametaphosphate, copper sulfate, lead nitrate, ammonia carbonate, sodium n-butylxanthate, No.25 aerofloat, kerosene (or diesel oil) and No.2 oil are added in sequence, wherein the sodium hexametaphosphate serves a dispersing agent, the copper sulfate, lead nitrate and ammonia carbonate serve as an activating agent, the n-butylxanthate and No.25 aerofloat serve as a collecting agent, the kerosene (or diesel oil) serves an emulsifying agent, and the No.2 oil serves as a foaming agent, and gold and the micro-fine particle antimony minerals are recycled through flotation. The technique is reasonable, procedures are simple, the gold and antimony recovery rate is high, and industrialized implementation is easy.
Owner:KUNMING UNIV OF SCI & TECH

Method for recycling lead oxide from lead plaster of waste lead-acid storage battery

The invention relates to the technical field of clean recycling of waste batteries and discloses a method for recycling lead oxide from lead plaster of a waste lead-acid storage battery. The method comprises the following steps that (1) pre-desalination is conducted, specifically, the lead plaster of the waste lead-acid storage battery is added with alkali liquor to be subjected to pre-desalination, so that lead acid, lead acetate, lead nitrate, lead perchlorate or lead carbonate in the lead plaster is removed; (2) dissolution is conducted, specifically, a complexing agent solution is added into the lead plaster subjected to pre-desalination, all PbO in the lead plaster reacts with a complexing agent to generate lead complex ions, and a lead-bearing solution and filter residues are obtained; (3) dissociation is conducted, specifically, the pH value of the lead-bearing solution is adjusted by adding a dissociation agent solution, so that the lead complex ions are dissociated, and the PbO and a mixed solution containing the complexing agent and a dissociation agent are obtained; and (4) separating is conducted, specifically, a lead oxide product is obtained after solid-liquid separation and washing. According to the method, the technological condition is mild, the technological process is environmentally friendly, the technological procedure is simple, energy consumption is small, the cost is low, the lead oxide recycling rate is high, the purity is high, and the method has very high industrial application value.
Owner:CHAOWEI POWER CO LTD

Analysis method of heavy metals in textiles

The invention discloses an analysis method of heavy metals in textiles. The method comprises the following steps: firstly, uniformly mixing cadmium nitrate, nickel nitrate, lead nitrate and lithium borate, and grinding to prepare a plurality of standard reserve substances in different mass concentrations; secondly, mixing the standard reverse substances with standard polyester-accompanied fragments to prepare a plurality of standard products in different mass concentrations; thirdly, measuring the fluorescence intensity of each element in the standard products, drawing a scatter diagram by taking the concentration as an X axis and the fluorescence intensity of the element as a Y axis to obtain a standard curve of each element and calculating a linear regression equation of each standard curve; and finally, measuring the X ray fluorescence intensities of cadmium, nickel and lead in a textile sample to be detected, checking the corresponding concentrations on the standard curve, or calculating the concentrations of the cadmium, the nickel and the lead in the sample to be detected according to the linear regression equations. The analysis method disclosed by the invention can be used for directly testing an original sample without damaging the sample and high in detection speed; the dosages of strong acid and a strong oxidant for digestion are reduced, and the damages to environments and testers are reduced.
Owner:THE INSPECTION & QUARANTINE TECH CENT ZHEJIANG ENTRY EXIT INSPECTION & QUARANTINE BUREAU

Flotation activating agent for fine-grain cassiterite and preparing method of flotation activating agent

The invention discloses a flotation activating agent for fine-grain cassiterite and a preparing method of the flotation activating agent. The flotation activating agent is a coordination compound of lead and ammonia, and the molecular formula of the coordination compound is [Pb(NH3)x]2+, wherein X in the molecular formula ranges from one to eight. The preparing method of the flotation activating agent mainly comprises the steps that, lead nitrate, lead acetate hydrate and lead acetate are dissolved in ethyl alcohol or methyl alcohol or water through ammonium hydroxide dissolving, then, sodium hydroxide and sodium carbonate are added, mixing is conducted for the reaction, and the flotation activating agent is obtained through drying. The flotation activating agent is used for activating the fine-grain cassiterite in ore, the surface hydrophobicity of the fine-grain cassiterite is improved, the proportion of lead and ammonia in the flotation coordination compound of the cassiterite is increased, adjustment can be conducted according to the specific beneficiation raw material condition, flexibility and changeability are achieved, adaptability is high, and the application range is wide. The flotation tin concentrate grade and recycling rate of the fine-grain cassiterite are increased, economic benefits are increased, raw materials are cheap and easy to obtain, and the production cost is low.
Owner:YUNNAN YUANKUANG TECH DEV CO LTD

Tungsten tin mineral beneficiation method

ActiveCN109127120ASolve the problem of high mineral processing costIncrease profitFlotationLead nitrateHydroxamic acid
The invention discloses a tungsten tin mineral beneficiation method; and tungsten tin minerals are tungsten tin fed ores as sulfide ores flotation tailings obtained after grinding of multimetal ores of tungsten associated cassiterite, removal of magnetite by magnetic separation and removal of sulfur concentrates by sulfide ore flotation. Mixed liquid of sodium carbonate and sodium hydroxide, sodium fluosilicate, sodium hexametaphosphate and lead nitrate are added in the tungsten tin fed ores for pulping; then, collecting agents-benzohydroxamic acid, hydroxamic acid and emulsified oleic acid are added for tungsten tin mixed flotation; and tungsten tin mixed concentrates with WO3 of not less than 20% and Sn of not less than 1% are obtained by 2 times of roughing, 3-4 times of selection and 2-3 times of scavenging. The method has the following characteristics: the beneficiation method of tungsten tin mixed flotation is used for the tungsten tin fed ores; and when tungsten minerals are recovered by floatation, tin minerals are enriched in tungsten concentrates to achieve the purpose of synchronously recovering the tin minerals. The method is simple in recovery process flow, stable in beneficiation process and suitable for beneficiation of the tungsten tin fed ores with WO3 of 0.2-0.5%, Sn of not more than 0.2%, CaF2 of not more than 25%, CaCO3 of not more than 10% and the black andwhite tungsten ratio of 2: 8-8: 2.
Owner:INST OF RESOURCES UTILIZATION & RARE EARTH DEV GUANGDONG ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products