Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

40results about How to "Improve ion conduction" patented technology

Polyarylethersulfone containing multiple flexible side chain quaternary ammonium salt structures, and preparation method thereof

The invention belongs to the field of polymer anion exchange membranes and preparation thereof, and particularly relates to polyarylethersulfone containing multiple flexible side chain quaternary ammonium salt structures, and a preparation method thereof. The preparation method comprises the following steps: firstly, performing bromination and Suzuki coupling on 4,4'-difluorodiphenyl sulfone to prepare an active difluorosulfone monomer containing an octamethoxy structure; then, performing copolycondensation on the monomer, 4,4'-difluorodiphenyl sulfone and biphenol to prepare polyarylether sulfone containing a polymethoxy structure, further utilizing a demethylation reaction to convert the prepared polyether sulphone containing the polymethoxy structure into a polymer containing a hydroxylstructure, and finally utilizing a Williamson reaction to react the polymer containing the hydroxyl structure with (5-bromopentyl)trimethylammonium bromide to obtain the polyethersulfone containing multiple flexible side chain quaternary ammonium salt structures. The polyarylethersulfone has excellent film-forming property, and the prepared polymer film has high alkali-resistant stability, ionicconductivity and dimensional stability, and has important potential application value in application of alkaline fuel cells.
Owner:CHANGZHOU UNIV

Method for improving specific capacitance of electric double-layer capacitor

The invention relates to a method for improving specific capacitance of an electric double-layer capacitor, belongs to the technical field of a capacitor and solves the problems that since liquid absorption rate of a capacitor diaphragm for electrolyte is low, equivalent internal resistance of the electric double-layer capacitor is large, ionic conductance is low and specific capacitance is low in the prior art. The method comprises the following steps: to begin with, peeling an eggshell membrane from an eggshell, cleaning and cutting the eggshell membrane to a required size; then, preparing an egg white base gel electrolyte solution formed by egg white, water and neutral salt; placing the cut eggshell membrane into the egg white base gel electrolyte solution for more than 10 mins; wiping unnecessary electrolyte solution on the surface of the eggshell membrane to obtain an egg white base gel electrolyte; and assembling the egg white gel electrolyte into an electric double-layer capacitor. The method is simple and environment friendly; and by utilizing affinity between the egg white and the eggshell membrane as well as gel property of the egg white in increasing viscosity of the electrolyte, the eggshell membrane is allowed to absorb larger amount of electrolyte solution, so that internal resistance of the capacitor is reduced, ionic conduction is improved, and specific capacitance of the capacitor is improved.
Owner:王馨瑜

Ternary positive electrode material@titanium nitride core-shell-structured composite material and preparation method thereof

The invention discloses a ternary positive electrode material@titanium nitride core-shell-structured composite material, belonging to the technical field of positive electrode materials of lithium ion batteries. The composite material is of a compact double-layer structure, wherein the inner layer is a nickel-cobalt-aluminum or nickel-cobalt-aluminum ternary positive electrode material, and the outer layer is a high-crystallinity titanium oxide TiN; on the basis that the total weight of the composite material is 100%, the mass fraction of the inner layer is 30-95%, and the mass fraction of the outer layer is 5-70%; and the outer layer is TiN with high crystallinity, the crystallinity of the outer layer is not lower than 90%, and the purity of the outer layer is not lower than 99.5%. In addition, the invention also discloses a preparation method of the composite material. Compared with an original ternary positive electrode material which is not subjected to coating treatment, the composite material of the invention has the characteristics of remarkably improved conductivity, relatively high specific capacity, good cycling stability, improved rate capability and reduced internal resistance. The preparation method is simple in process, free of pollution, low in cost, short in flow and easy for industrial amplification.
Owner:TSINGHUA UNIV

Lithium-sulfur battery positive copolymer sulfur material and prepared lithium-sulfur battery made from material

The invention provides a lithium-sulfur battery positive copolymer sulfur material. The lithium-sulfur battery positive copolymer sulfur material is prepared through steps as follows, (1), sublimed sulfur powder and organic polymerization agent are collected to obtain uniform mixture through grinding, and the organic polymerization agent is nitrile organic substance; (2), the uniform mixture of the sublimed sulfur and the organic polymerization agent is sealed in a container under the high temperature condition and is insulated and stirred; and (3), the copolymerized sulfur obtained in the step (2) is pulverized to obtain positive electrode copolymerized sulfur particles. The invention further provides a lithium-sulfur battery made from the lithium-sulfur battery positive copolymer sulfurmaterial. The lithium-sulfur battery positive copolymer sulfur material is advantaged in that preparation requirements can be met through simple heating equipment, and the preparation process has characteristics of convenient operation and simple process. The preparation method is advantaged in that chemical bonding between the organic matter and the sulfur is produced through bond opening reaction of nitrile compounds'unique carbon-nitrogen triple bond and the 8-membered ring structure of the sublimated sulfur at the high temperature, and the polymeric sulfur copolymer can be formed.
Owner:BEIHANG UNIV

Electrode and preparation method thereof

The invention relates to the technical field of lithium ion batteries, in particular to an electrode and a preparation method thereof. The electrode comprises a current collector, a plurality of through hole layers and a plurality of active layers, the through hole layers and the active layers are arranged on the current collector, and the through hole layers are arranged between the current collector and the active layers or between any adjacent active layers. The electrode is composed of a plurality of active layers and through hole layers, each through hole layer is composed of a net structure of a high polymer, the high polymer is dissolved in electrolyte when the electrode is used, namely a pore structure with controllable pore size and distribution is formed, so that each active layer can be in contact with more electrolyte, and the problems that electrolyte infiltration of a thick electrode is difficult and ion transmission is slow are solved. Besides, the morphology of the through hole layer is controllable, compared with a traditional porous electrode, the tortuosity of pores is lower, ion conduction is faster, the ion conductivity of the pole piece is improved, and then the energy, the power density and the rate capability of a battery cell are guaranteed.
Owner:RISESUN MENGGULI NEW ENERGY SCIENCE & TECHNOLOGY CO LTD

Preparation and application of non-woven multifunctional diaphragm

The invention discloses preparation and application of a non-woven multifunctional diaphragm. The preparation method comprises the following steps: (1) mixing deionized water and a formamide solutionwith a certain proportion with a commercial vanadium pentoxide drug, carrying out a hydrothermal reaction in a reaction kettle under certain conditions, and carrying out suction filtration and dryingto obtain a vanadium pentoxide nanosheet; (2) mixing the vanadium pentoxide nanosheet with a certain concentration with polyvinyl butyral ester, polyethylene glycol octylphenyl ether and dibutyl phthalate in absolute ethyl alcohol, drying to form a diaphragm, and testing the water absorption rate of the diaphragm; and (3) assembling the vanadium pentoxide nanosheet diaphragm with a certain concentration and two pieces of commercial carbon cloth with the same size into an energy storage device, exploring the optimal concentration of the vanadium pentoxide nanosheet of the diaphragm, and calculating the ionic conductivity of the vanadium pentoxide nanosheet. According to the invention, the diaphragm which is low in cost, high in ionic conductivity, stable in electrochemical performance and adjustable in adsorbability is prepared through the method which is simple and rapid to operate, and a new thought is provided for research and development of diaphragms of energy storage devices.
Owner:GUILIN UNIVERSITY OF TECHNOLOGY

Method for performing sulfur-doped phosphorus modification on carbon surface and application thereof

The invention belongs to the technical field of battery materials, and discloses a method for performing sulfur-doped phosphorus modification on a carbon surface and application of the method, the method comprises the following steps: mixing a phosphorus source and a sulfur source, and then performing heat treatment on the mixed phosphorus-sulfur mixed material and a raw material with a carbon-based surface at 300-600 DEG C to obtain a product, the introduction of sulfur can improve the deposition efficiency, uniformity and environmental stability of the phosphorus element on the carbon-based surface in the heat treatment process, and the correspondingly obtained material has a sulfur-doped phosphorus interface layer. According to the method disclosed by the invention, the high-performance battery negative electrode material with the sulfur-doped phosphorus interface layer can be particularly obtained, the high-performance battery negative electrode material is used as an alkali metal ion battery, and the sulfur-doped phosphorus interface layer has good environmental stability, so that the material can be used for manufacturing a battery electrode by using a water-based binder; and phosphides generated in the circulation process can improve the ionic conductivity of the material, so that the fast charging performance of the battery is improved.
Owner:HUAZHONG UNIV OF SCI & TECH

Methods of Improving the Specific Capacitance of Electric Double Layer Capacitors

The invention relates to a method for improving specific capacitance of an electric double-layer capacitor, belongs to the technical field of a capacitor and solves the problems that since liquid absorption rate of a capacitor diaphragm for electrolyte is low, equivalent internal resistance of the electric double-layer capacitor is large, ionic conductance is low and specific capacitance is low in the prior art. The method comprises the following steps: to begin with, peeling an eggshell membrane from an eggshell, cleaning and cutting the eggshell membrane to a required size; then, preparing an egg white base gel electrolyte solution formed by egg white, water and neutral salt; placing the cut eggshell membrane into the egg white base gel electrolyte solution for more than 10 mins; wiping unnecessary electrolyte solution on the surface of the eggshell membrane to obtain an egg white base gel electrolyte; and assembling the egg white gel electrolyte into an electric double-layer capacitor. The method is simple and environment friendly; and by utilizing affinity between the egg white and the eggshell membrane as well as gel property of the egg white in increasing viscosity of the electrolyte, the eggshell membrane is allowed to absorb larger amount of electrolyte solution, so that internal resistance of the capacitor is reduced, ionic conduction is improved, and specific capacitance of the capacitor is improved.
Owner:王馨瑜

A preparation method of a high-rate silicon oxide-based lithium battery negative electrode material

The invention belongs to the field of new energy materials and electrochemistry, and particularly relates to a preparation method of a high-rate monox-based lithium electric anode material. Accordingto the method, a sol-gel method and a carbon thermal reduction method are adopted to prepare a monox-carbon / graphene material with electrochemical activity, then dispersed fast ion conductor lithiumsilicate is prepared on the surface of the monox-carbon material through spin wrapping and thermal treatment, and finally the monox-carbon@lithium silicate / graphene material is obtained. The fast ionconductor lithium silicate can effectively accelerate the ion transport during charging and discharging of a composite material and accelerate the reaction kinetics of an electrode. The in-situ introduction of the flexible graphene during preparation can effectively buffer the volume change caused by the lithium deintercalation of monox in a cyclic process and improve the structural stability ofthe electrode. The preparation method of the high-rate monox-based lithium electric anode material has the advantages that the designed material has higher rate characteristics and good cycle stability; the preparation process has higher controllability and can be applied to the preparation of other high-performance electrode materials.
Owner:UNIV OF SCI & TECH BEIJING

Preparation method and application of conductive adhesive based on reinforced polysulfide ion adsorption

The invention relates to a lithium-sulfur battery technology, and aims to provide a preparation method of a conductive adhesive based on reinforced polysulfide ion adsorption. The preparation method comprises the following steps: adding beta-cyclodextrin dissolved by deionized water into an aniline solution, and performing ultrasonic dispersion and vacuum drying to obtain an aniline cyclodextrin inclusion compound; preparing a solution from the aniline cyclodextrin inclusion compound and deionized water; dropwise adding hydrogen peroxide, and carrying out ultrasonic dispersion to polymerize aniline in the adjacent aniline cyclodextrin inclusion compound; and drying in vacuum to obtain the conductive adhesive. Compared with a traditional binder, the product has excellent electrical conductivity, the electrode impedance can be greatly reduced, and the used binder is environmentally friendly and green. The obtained modified porous carbon has the characteristics of large specific surface area and large pore volume, can carry more sulfur, has very strong polysulfide adsorption capacity, is favorable for inhibiting shuttling of polysulfide ions due to iron oxide dispersed on the inner wall of the carbon, is suitable for preparing a high-performance sulfur electrode material, and prolongs the service life of a sulfur battery.
Owner:ZHEJIANG UNIV

A lithium-sulfur battery cathode copolymerized sulfur material and a lithium-sulfur battery made of it

The invention provides a lithium-sulfur battery positive copolymer sulfur material. The lithium-sulfur battery positive copolymer sulfur material is prepared through steps as follows, (1), sublimed sulfur powder and organic polymerization agent are collected to obtain uniform mixture through grinding, and the organic polymerization agent is nitrile organic substance; (2), the uniform mixture of the sublimed sulfur and the organic polymerization agent is sealed in a container under the high temperature condition and is insulated and stirred; and (3), the copolymerized sulfur obtained in the step (2) is pulverized to obtain positive electrode copolymerized sulfur particles. The invention further provides a lithium-sulfur battery made from the lithium-sulfur battery positive copolymer sulfurmaterial. The lithium-sulfur battery positive copolymer sulfur material is advantaged in that preparation requirements can be met through simple heating equipment, and the preparation process has characteristics of convenient operation and simple process. The preparation method is advantaged in that chemical bonding between the organic matter and the sulfur is produced through bond opening reaction of nitrile compounds'unique carbon-nitrogen triple bond and the 8-membered ring structure of the sublimated sulfur at the high temperature, and the polymeric sulfur copolymer can be formed.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products