Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

82results about How to "Increase intrinsic activity" patented technology

Metal boride water-splitting catalyst, preparation method and application of catalyst in electro-catalytic water splitting

The invention discloses a metal boride water-splitting catalyst, a preparation method and an application of the catalyst in electro-catalytic water splitting and belongs to the technical field of preparation of an electrocatalyst. The metal boride water-splitting catalyst is prepared with a solid-phase boriding method, transition metal is coated with a solid boriding agent, and boriding treatmentis performed through temperature programming heating. The boriding agent is prepared from a necessary boriding medium and an unnecessary filling agent. Compared with liquid boriding, a solid boridingmethod has the advantages that the surface clearing difficulty is low after boriding, requirements for equipment are low, and the method is applicable to boriding treatment of various transition metals. The catalyst has very good intrinsic catalysis activity and stability performance under the alkaline condition, and the required potential is 300-400 mV when the current density is 10 mA cm<-2>; the electro-catalytic water splitting oxygen evolution stability can be as long as at least 100 h while the performance is not attenuated, and the catalyst can replace noble metals to promote commercialapplication of electro-catalytic water splitting.
Owner:JILIN UNIV

Core shell carbon nano-structure electrocatalyst with high catalytic performance and preparation method thereof

The invention discloses a core shell carbon nano-structure electrocatalyst with high catalytic performance and a preparation method thereof. Phthalocyanine iron having an enclosed edge structure is used as a shell, a conductive carbon is used as a core, and an Fe-N4 central structure of iron phthalocyanine unit is used as an active site. The preparation method comprises the following steps: 1), adding the conductive carbon into a mixed solution of pyromellitic dianhydride and phthalic anhydride, and performing drying to obtain powder A; 2), uniformly mixing the powder A with an iron compound,ammonium molybdate and urea to obtain powder B, heating to ensure that the powder B is a fused solution, performing microwave reaction to ensure that in-site polymerization reaction is carried out, and performing washing and drying to obtain the core shell carbon nano-structure electrocatalyst with the high catalytic performance. Being obviously superior to commercial Pt/C catalyst, the novel core shell carbon catalyst disclosed by the invention has excellent high oxygen reduction catalytic activity, excellent circulation stability and excellent CH3OH/CO tolerance; the raw materials used by synthesis of the catalyst are market developed products and are low in cost; the preparation process is simple and feasible, and is suitable for commercial mass production.
Owner:WUHAN UNIV

Preparation method for high-activity hydrodesulfurization catalyst

The invention provides a preparation method for a high-activity hydrodesulfurization catalyst. The method comprises the following steps: with a carbon-based material as a carrier, subjecting the carbon-based material to surface modification; preparing a hydrodesulfurization precursor solution containing the active components Ni and Mo, or the active components Co and Mo or the active components Niand Mo; and immersing a modified carbon-based material into the hydrodesulfurization precursor solution to allow the active components to be impregnated onto the surface of the carrier, and carryingout drying and calcining so as to obtain a carbon-based hydrodesulfurization catalyst containing the active components Ni and Mo, or the active components Co and Mo or the active components Ni and Mo.According to the invention, through surface treatment of a carbon material carrier, such as oxidation with oxidizing acid or treatment with oxidizing gas, the surface of the carbon material carrier can be rich in hydroxyl groups. By adjusting and changing of the degree of treatment, the active components of the carrier can be changed from single-layer dispersion to few-layer and multi-layer dispersion. Thus, sulfurization of the Ni and Mo components can be realized to a maximum extent; and the intrinsic activity of the hydrodesulfurization catalyst can be substantially improved.
Owner:UNIV OF SCI & TECH LIAONING

Preparation method of mesoporous nitrogen-doped graphene-loaded molybdenum disulfide synthesized by laser irradiation and application of mesoporous nitrogen-doped graphene-loaded molybdenum disulfide in electrocatalytic hydrogen production

The invention relates to a preparation method of mesoporous nitrogen-doped graphene-loaded molybdenum disulfide synthesized by laser irradiation and application of the mesoporous nitrogen-doped graphene-loaded molybdenum disulfide in electrocatalytic hydrogen production. In order to solve the problems that by an existing synthesis process, transition metal oxide/sulfide composite mesoporous nitrogen-doped graphene rich in carbon-pyridine nitrogen metal bonds cannot be synthesized at low temperature and under low pressure, and the content of the carbon-pyridine nitrogen metal bonds in the composite system cannot be regulated and controlled effectively, it is found that the content of the carbon-pyridine nitrogen-molybdenum bonds in the composite catalyst can be improved by irradiating graphene oxide with laser in a range of 177-315 mJ, and in a hydrothermal process, the mass ratio of laser irradiation graphene oxide to tetrathiomolybdic acid as raw materials is 1: 1-1: 8, the loading amount of the molybdenum disulfide on mesoporous graphene can be optimized, thus, while the conductivity of the molybdenum disulfide is improved, the intrinsic activity of the molybdenum disulfide can also be improved synergistically by the carbon-pyridine nitrogen molybdenum bonds at an interface, and the electrocatalysis process of HER is promoted. The preparation method is simple in process, ingenious in design and low in cost, and is safe and environmentally friendly.
Owner:TIANJIN UNIV

Synergistically modified composite electrocatalyst and application thereof in ethanol oxidation

The invention belongs to the field of electrocatalytic materials, and discloses a synergistically modified composite electrocatalyst and an application thereof in ethanol oxidation. The composite electrocatalyst is composed of an active noble metal phase and a basic carbonate matrix phase, wherein the active noble metal phase is dispersed and distributed on the surface of the basic carbonate matrix phase with a nanowire structure in the form of fine nanoparticles. The synergistic modified composite electrocatalyst provided by the invention optimizes intrinsic activity, the number of active sites and electrical conductivity at the same time. Based on synthesis of the matrix phase with a nanowire structure, the noble metal oxide phase is deposited on the surface of a nanowire through hydrolysis, and finally, the active metal phase is selectively reduced by regulating and controlling the heat treatment condition, so that the active metal phase is combined with the basic carbonate matrix to construct synergistic catalytic active sites, and the obtained composite electrocatalyst has high intrinsic activity, rich active sites and good electrical conductivity. And the electrochemical oxidation reaction of ethanol can be efficiently and stably catalyzed under an alkaline condition.
Owner:SOUTH CHINA UNIV OF TECH

Preparation method of ruthenium@ruthenium dioxide core-shell nanospheres containing tensile strain for acidic oxygen production electrocatalyst

The invention relates to a preparation method of ruthenium@ruthenium dioxide core-shell nanospheres containing tensile strain for an acidic oxygen production electrocatalyst. Ruthenium dioxide powderis placed in ultrapure water to be subjected to ultrasonic dispersion to obtain turbid liquid without sediment; the turbid liquid is continuously stirred at room temperature, and the turbid liquid isirradiated by using nanosecond parallel pulse laser to obtain a black solution; the black solution is placed in a refrigerator to be frozen into a solid, then the frozen solid is placed in a freeze dryer to be freeze-dried, and the ruthenium@ruthenium dioxide core-shell nanospheres containing strain are obtained. According to the prepared sample, the overpotential at 10 mA cm <-2 > is only 191 mVand is reduced by 100 mV or above compared with commercial ruthenium dioxide, and the ruthenium@ruthenium dioxide core-shell nanospheres are a ruthenium-based catalyst which is optimal in performanceat present and does not introduce other atoms. The preparation method is simple in process, convenient to operate and easy to control, and a useful way is provided for designing and synthesizing an efficient electrocatalyst.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products