Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2622 results about "Thionyl chloride" patented technology

Thionyl chloride is an inorganic compound with the chemical formula SOCl₂. It is a moderately volatile colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes (50,000 short tons) per year being produced during the early 1990s. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

Metal phthalocyanine/carbon nano tube composite catalyst and its preparation method and lithium/thinly chloride battery using the catalyst

The invention discloses a metal phthalocyanine/carbon nanometer pipe compound catalyst, a method for preparing the same and a lithium/thionyl chloride battery using the same, wherein the metal phthalocyanine/carbon nanometer pipe compound catalyst is prepared by evenly and closely loading metal phthalocyanine compounds on a carbon nanometer pipe; and the metal phthalocyanine/carbon nanometer pipe compound catalyst is mixed with carbon black and a binding agent, and the mixture subjected to forming and drying to prepare an anode carbon plate of the lithium/thionyl chloride battery using the catalyst. The metal phthalocyanine compounds are evenly and closely loaded on the carbon nanometer pipe. On one hand, the electrically discharged product of a LiCl film can be loosened by the catalysis of the metal phthalocyanine compounds; on the other hand, a network structure is built up in the carbon anode of the carbon nanometer pipe, which facilitates the electric communication of electrolytes and the improvement of electric conductivity of the electrodes. Due to the synergetic effect of the metal phthalocyanine compounds and the carbon nanometer pipe, the operating voltage of the lithium/thionyl chloride battery is improved. The method has advantages of simple process, simple operation, the suitability for industrialized production and obvious practical values and economic benefits.
Owner:SOUTH CHINA NORMAL UNIVERSITY +1

Preparation method of improved 4,4-dichlorodiphenylsulfone

The invention discloses a preparation method of improved 4,4-dichlorodiphenylsulfone. The method comprises steps that: (1) Al2Cl3 is adopted as a catalyst; chlorobenzene, thionyl chloride are adopted as reaction materials; the materials are subject to a Friedel-Crafts reaction; a mother liquor obtained after the reaction is hydrolyzed; the hydrolyzed mother liquor is refluxed for 45 to 60min under a temperature of 95 to 100 DEG C; after refluxing, the mother liquor is cooled to below 20 DEG C, such that the liquor is divided into an organic phase and a water phase; the organic phase is processed through reduced-pressure distillation and centrifugal washing until the organic phase turns neutral, and the organic phase is preserved as a product M for later use, wherein a main component in the product M is 4,4-dichlorodiphenylsulfone; (2) the product M and an oxidizing agent of hydrogen peroxide are adopted as raw materials, and 1,2-dichloropropane is adopted as an organic solvent; an oxidizing reaction is carried out upon the main component 4,4-dichlorodiphenylsulfone in the product M under the effect of a composite catalyst, such that a 4,4-dichlorodiphenylsulfone crude product is synthesized, wherein the composite catalyst is phosphotungstic acid or silicotungstic acid loaded on active carbon. Therefore, the method provided by the invention has advantages of high yield and good product quality. With the method, wastewater can be circulated and reused.
Owner:WUJIANG BEISHE SHENGYUAN TEXTILE PROD AUXILIARIES PLANT

Synthetic process for efficiently and continuously producing 4,4-dichlorodiphenyl sulfone

The invention discloses a synthetic process for efficiently and continuously producing 4,4-dichlorodiphenyl sulfone, which comprises the following steps: carrying out Friedel-Crafts acylation on thionyl chloride and excessive chlorobenzene under the action of a lewis acid catalyst, carrying out pyrohydrolysis and adding chlorobenzene to carry out layering after the reaction is finished, adding anoxidizing agent into a sulfoxide organic layer to carry out oxidization, adding activated carbon to carry out decoloration and filtering; cooling filtrate and carrying out rejection filtration to obtain 4,4-dichlorodiphenyl sulfone. The synthetic process has the advantage that chlorobenzene not only is a raw material, but also is a reaction solvent, so that cross use of various solvents is avoided. Particularly, use of a great amount of acetic acid used as an oxidation reaction solvent is avoided, and corrosion to equipment and environmental pollution are avoided. In the integral process flow,separation and extraction of an intermediate 4,4-dichlorodiphenyl sulfoxide are avoided, so that production time of the product is greatly shortened, and production cost is saved. By using hydrogen peroxide, acetic acid and concentrated sulfuric acid as mixed oxidizing agents, oxidization capacity of hydrogen peroxide is greatly improved, yield and purity of the product are greatly improved, yield of the product reaches 90% or more, and purity of the product is greater than 99.8%.
Owner:九江中星医药化工有限公司

Functional graphene oxide for adjusting and controlling dispersibility of solvent by using organic chain segment as well as preparation method thereof

The invention discloses a functional graphene oxide for adjusting and controlling the dispersibility of a solvent by using an organic chain segment as well as a preparation method thereof. The structural formula of the functional graphene oxide is shown in specification, wherein R is equal to R1, R2 and R3. The preparation method comprises the following steps: 1, dispersing graphite oxide prepared by a Hummers method in N, N-dimethylformamide to form uniform dispersion liquid; 2, adding a thionyl chloride agent into the product obtained in step 1 to perform reflux reaction to synthesize an intermediate product of graphite oxide activated by acyl chloride; 3, distilling the mixed liquor obtained in step 2 under reduced pressure to remove excessive thionyl chloride; 4, adding pyridine and graft organic molecules into the product obtained in step 3, and heating and stirring the mixture; and 5, filtering, washing and then drying the mixed liquor obtained in step 4. The functional grapheneoxide can disperse well in different solvents, particularly solvents with low polarity and low boiling point, can be preferably compatible with multiple polymer molecules, leads the preparation of nano particles/ polymer nano composite materials to be possible, and has good application prospects and economic benefits.
Owner:NANJING UNIV OF SCI & TECH

Synthetic method of thiophene-3-ethanol

InactiveCN102241662AHigh purityHigh purity yieldOrganic chemistrySodium bicarbonateEpoxy
The invention discloses a synthetic method of thiophene-3-ethanol. The method comprises the following steps of: adding a halogenated hydrocarbon solvent and ethylene glycol into a reaction kettle, dropwise adding thionyl chloride and preserving heat for reacting; separating liquid and extracting to obtain an organic phase containing a substance shown in the specifications; adding a ruthenium trichloride aqueous solution and a sodium bicarbonate aqueous solution in the presence of the halogenated hydrocarbon solvent and dropwise adding a sodium hypochlorite aqueous solution; after detecting that a system does not have oxidizing property, performing liquid separation, concentration, devitrification and drying to obtain a substance shown in the specifications, adding an ester solvent and butyl lithium into a reaction kettle, adding a prepared ester solution of tribromothiofuran and a prepared ester solution of the substance, separating the liquid and extracting to obtain a system containing a substance shown in the specifications; and adding a dilute sulfuric acid into the system containing the substance shown in the specifications, concentrating, neutralizing, extracting and concentrating to obtain an end product. The method has the advantages of high reaction purity and yield, stable process condition, easiness for operation and mass production capability; and the thiophene-3-ethanol is prepared from tribromothiofuran by performing low-temperature lithiation, so that the use of epoxy ethane serving as an explosive hazard is avoided, and mass production becomes possible.
Owner:ASYMCHEM LAB TIANJIN +4

Method for treating tail gas of acyl chlorination

The invention relates to a processing method of thionyl chloride acyl-chlorinated tail gas. Mixed tail gas produced by a acyl chlorinating process contains hydrogen chloride and sulfur dioxide; the sulfur dioxide is liquefied under a certain temperature condition; the incondensable hydrogen chloride and a little sulfur dioxide are absorbed in two stages by water; the absorbed tail gas in a first stage is pure hydrogen chloride gas; after being absorbed in a second stage, the qualified chlorhydric acid is obtained; first-stage falling film absorption liquid is resolved by heating; then the tail gas is sent to a liquefying process again; the liquid sulfur dioxide can be canned as a product; or after being vaporized, the liquid sulfur dioxide is absorbed by 30 percent of sodium hydroxide solution to obtain sodium sulfite aqueous solution which is further dried after low temperature crystallization or distillation to obtain 97 percent of sodium sulfite solid. With the method, the hydrogen chloride, the sulfur dioxide and a little thionyl chloride produced by an acyl chlorination synthetic process can be separated out to obtain the chlorhydric acid and the pure sodium sulfite solid. The processing method of the thionyl chloride acyl-chlorinated tail gas of the invention is capable of effectively recovering the thionyl chloride acyl-chlorinated tail gas, which has the advantages of safety process and easy control.
Owner:JIANGSU YANGNONG CHEM +2

Anthraquinone functional cellulose membrane and preparation method thereof

The invention belongs to the technical field of crossing of chemical engineering, materials engineering and environmental engineering, particularly relates to an improvement technology of cellulose membrane materials and a chemical grafting and fixing technology for treating anthraquinones compound carriers of wastewater containing nitrogen, and particularly relates to a method for preparing an anthraquinone functional cellulose membrane by fixing an anthraquinone compound on microcrystalline cellulose by chemical grafting. According to the method, the microcrystalline cellulose is used as a raw material; firstly, ionic liquid is used as a solvent for dissolving the microcrystalline cellulose; thionyl chloride modified cellulose is used for preparing cellulose chloride and then the cellulose chloride is reacted with amino anthraquinone in dimethylformamide to prepare an anthraquinone functional cellulose membrane material; the substitution degree of the prepared cellulose chloride can reach 1.89 and the anthraquinone grafting rate of the anthraquinone functional cellulose membrane reaches 82%; the anthraquinone functional cellulose is prepared by the two-step reaction; the content of anthraquinonyl is high and the grafting rate is high; the fixing effect is stable; finally, the anthraquinone functional cellulose is changed into the membrane by a phase transferring method; the membrane material can be used for accelerating and strengthening the biological degradation process in the treatment of the wastewater containing the nitrogen.
Owner:HEBEI UNIVERSITY OF SCIENCE AND TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products