Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

603 results about "Amino Acylation" patented technology

Acylation in biology. Protein acylation is the post-translational modification of proteins via the attachment of functional groups through acyl linkages. One prominent type is fatty acylation, the addition of fatty acids to particular amino acids (e.g. myristoylation or palmitoylation).

2-(2'-hydroxyphenyl) benzothiazole chelated zinc derivative as well as preparation method and application thereof

The invention relates to a 2-(2'-hydroxyphenyl) benzothiazole chelated zinc derivative as well as a preparation method and an application thereof, belonging to the field of organic electroluminescentluminescent materials. The preparation method of the derivative comprises the following steps: firstly, introducing different substituent groups with electron-withdrawing or electron-donating capability in a benzothiazole benzene ring or a hydroxyphenyl benzene ring of a 2-(2'-hydroxyphenyl) benzothiazole matrix to obtain a substituted 2-(2'-hydroxyphenyl) benzothiazole ligand; coordinating with diatomic zinc to form a corresponding complex, and the like. The substituted 2-(2'-hydroxyphenyl) benzothiazole ligand can be prepared by a plurality of reactions, such as substituted aniline acylation, hydroxyl protection, hydroxyl thiocarbonate, Jacobson cyclization while hydroxyl deprotection, and the like or prepared by a direct reaction of O-amino thiophenol and substituted ortho-hydroxybenzoic acid. When applied to an organic electroluminescent luminescent device as an electronic transmission layer, the derivative has favorable electronic transmission performance and has performance superior to the most common electronic transmission material 8-hydroxyquinoline aluminum.
Owner:DALIAN UNIV OF TECH

Method for synthesizing laurel acyl amino acid sodium

The invention discloses a method for synthesizing laurel acyl amino acid sodium. The method comprises the steps that lauric acid and phosgene react by being catalyzed by organic aryl amide, and lauroyl chloride is prepared; lauroyl chloride and amino acid react in an alkaline solution, and lauroyl amino acid salt is prepared; extraction separation is carried out, a catalyst is recycled from an organic phase, a water phase is sequentially subjected to acidification, filter separation, sodium hydroxide neutralizing and cooling crystallization, and laurel acyl amino acid sodium is obtained. According to the method, organic aryl amide is mainly adopted as the catalyst for the reaction of lauric acid and phosgene, the lauric acid acylation reaction is thorough, no residue exists, acyl chloride products do not need layering, distilling and other purifying processes can be directly used for synthesizing laurel acyl amino acid sodium, and especially the catalyst can be recycled and cyclically utilized through a simple method. Compared with use of existing DMF and other fatty amine catalysts, the process steps are greatly simplified, the yield and quality of the product are improved, production cost is reduced, environmental protection is facilitated, and the requirements of industrial production are met.
Owner:CHANGSHA PUJI BIOTECH

Water-soluble near infrared luminescent quinoline squaraine dye and preparation and application thereof

The invention relates to water-soluble near infrared luminescent quinoline squaraine dye, of which the molecular structural general formula is shown on the figure. The method for preparing the water-soluble near infrared luminescent quinoline squaraine dye comprises that: firstly, 2-methylquinoline is subjected to bromination, sulfonation, nitration and acylation and reacts with acetonitrile and iodo-acid or iodo-ester to generate quinoline quaternary ammonium salt; and secondly, the quinoline quaternary ammonium salt is mixed with squaric acid, and the mixture is subjected to azeotropic distillation and dehydration, vacuum distillation and silica gel column chromatography and recrystallization through ethanol to obtain the water-soluble quinoline squaraine dye. The dye is applied in the fields of development of novel medicines, fluorescence labeling, probes, biological immunoassay, biological immunodetection and the like. The fluorescence-emission wavelength of the water-soluble quinoline squaraine dye is near infrared, so that the water-soluble quinoline squaraine dye has superior penetrability on environments and biological tissues and reduces self absorption and background absorption, and the sensitivity of fluorescence analysis can reach 10<-10> mol/L. The preparation method is simple and easy, has low cost and good economic benefit and is suitable for industrialized production.
Owner:DONGHUA UNIV

Preparation method of ferrocenyl carbon nanotube composite material and application thereof

The invention discloses a preparation method of a ferrocenyl carbon nanotube composite material and application thereof and belongs to the technical field of synthesis of inorganic materials. The preparation method of the composite material comprises the following steps: firstly carrying out oxidization and amination on carbon nanotubes and carrying out acylation on ferrocenecarboxylic acid, then taking triethylamine as an acid-binding agent in a dichloromethane solvent, and enabling the carbon nanotubes subjected to amination to react with activated ferrocenylformyl chloride to prepare the composite material. The preparation method of the composit material is simple and is mild in reaction condition; the product is convenient to separate and purify and stable in structure. The composite material takes the carbon nanotubes with large specific surface area and high conductivity as support materials; ferrocenyl derivatives which can be used as electron media and provided with excellent electrochemical reversibility are covalently coupled on the surfaces of the carbon nanotubes, so that the composite material is excellent in effect of redox reaction for electrochemically catalyzing dopamine; the common interference matters including ascorbic acid and uric acid have no interference on detection of dopamine; the composite material is wide in linear response range and high in sensitivity and repeatability for detection of dopamine.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products