Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

802 results about "Microbacterium" patented technology

Microbacterium is a genus of bacteria in the family Microbacteriaceae.

Feed additive composition

A feed additive composition comprising a direct fed microbial (DFM), in combination with a xylanase (e.g. endo-1,4-β-d-xylanase) and a β-glucanase (and optionally a further fibre degrading enzyme), wherein the DFM is selected from the group consisting of an enzyme producing strain; a C5 sugar-fermenting strain; a short-chain fatty acid-producing strain; a fibrolytic, endogenous microflora-promoting strain; or combinations thereof. The DFM may be selected from the group consisting of: Bacillus subtilis AGTP BS3BP5, Bacillus subtilis AGTP BS442, B. subtilis AGTP BS521, B. subtilis AGTP BS918, Bacillus subtilis AGTP BS1013, B. subtilis AGTP BS1069, B. subtilis AGTP 944, B. pumilus AGTP BS 1068 or B. pumilus KX11-1, Enterococcus faecium ID7, Propionibacterium acidipropionici P169, Lactobacillus rhamnosus CNCM-1-3698, Lactobacillus farciminis CNCM-1-3699, a strain having all the characteristics thereof, any derivative or variant thereof, and combinations thereof and the further fibre degrading enzyme may be selected from the group consisting of a cellobiohydrolase (E.C. 3.2.1.176 and E.C. 3.2.1.91), a β-glucosidase (E.C. 3.2.1.21), a β-xylosidase (E.C. 3.2.1.37), a feruloyl esterase (E.C. 3.1.1.73), an α-arabinofuranosidase (E.C. 3.2.1.55), a pectinase (e.g. an endopolygalacturonase (E.C. 3.2.1.15), an exopolygalacturonase (E.C. 3.2.1.67) or a pectate lyase (E.C. 4.2.2.2)), or combinations thereof.
Owner:DUPONT NUTRITION BIOSCIENCES APS

Engineered nitrile hydratase-producing bacterium with amidase gene koucked-out, the construction and the use thereof

ActiveUS20110104690A1Inhibit expressionNot affect performance of strainBacteriaUnicellular algaeBacteroidesLarge fragment
An engineered nitrile hydratase-producing bacterium and its construction method as well as its applications, wherein the engineered nitrile hydratase-producing bacterium is a mutant strain of an original nitrile hydratase-producing bacterium strain obtained by knocking-out or inhibiting the amidase gene in the original strain. The construction method of the engineered bacterium is to block the expression of the amidase gene by inserting the large fragment of a recombinant suicide plasmid carrying an amidase gene fragment into a wild-type strain through the homologous recombination between the recombinant suicide plasmid and the amidase gene of the wild-type strain. Compared to the corresponding wild-type bacterium strain, both the cell growth and the nitrile hydratase expression of the engineered nitrile hydratase-producing bacterium according to the invention are increased. In the process of catalyzing the hydration of acrylonitrile to produce acrylamide, the yield of the product, acrylamide, is significantly increased, while the yield of the by-product acrylic acid is significantly decreased. The engineered nitrile hydratase-producing bacterium of the present invention has wide application prospect in the production of acrylamide by microbiological process.
Owner:TSINGHUA UNIV

Molecular and bioinformatics methods for direct sequencing

The present invention relates to methods for preparing an isolated biological sample containing at least one of DNA and RNA, such that the DNA and/or RNA is preserved in the sample at ambient temperatures for at least thirty days, the method comprising: contacting the isolated biological sample with a composition comprising a chaotropic agent, and subjecting the contacted sample to microbial cell lysis; and optionally, contacting the lysed biological sample with a slurry of size-selected silicon dioxide to form at least one of DNA-silicon dioxide complexes or RNA-silicon dioxide complexes in the sample; isolating at least one of DNA-silicon dioxide complexes or RNA-silicon dioxide complexes from the sample; and, separating at least one of DNA and RNA from the silicon dioxide and collecting at least one of the DNA and RNA.
The present invention further relates to methods for preparing an isolated biological sample, the method comprising, separating the components in an isolated biological sample according to their size, wherein the components are at least one of DNA and RNA; purifying and isolating SSU rRNA from the biological sample using a composition comprising a ribonuclease inhibitor and a deoxyribonuclease to remove DNA from the sample, reverse transcribing the SSU rRNA into ds cDNA using random primers for SSU rRNA.
The present invention also relates to computer implemented methods comprising, receiving an isolated sample prepared according to the methods of the invention, sequencing the sample, and providing the sequence with a sequence identifier (ID), the sequence comprising a plurality of groups of k-mers, each group of k-mers defining a node in a multi-level hierarchy which defines the relationship between the groups of k-mers; providing each group of k-mers with a respective group identifier (ID), determining the frequency of the k-mers in each group; generating a group signature array for each group of k-mers, each group signature array comprising the k-mers in each group that have the most increased frequency compared with the sibling k-mers; generating a signature map comprising each group signature array and at least one of the identifiers, the identifier of at least one parent group and the identifier of at least one child group; and outputting the signature map to be used to classify the sequence.
Owner:16S TECH INC

Method for producing extracellular pullulanase by applying auto-induction culture medium and dual-temperature control strategy

The invention provides a method for producing extracellular pullulanase by applying an auto-induction culture medium and a dual-temperature control strategy, belonging to the technical field of pullulanase production through microbial fermentation. The method has the following beneficial effects: pullulanase coding genes from Klebsiella variicola CCTCC M2012108 are inserted into an expression vector pET28a(+) to construct recombinant plasmids and E.coli is converted to obtain a recombination strain E.coli BL21(DE3) / pET28a(+)-pulA containing the target pullulanase gene; the auto-induction culture medium is utilized to culture the recombinant E.coli BL21(DE3) / pET28a(+)-pulA and ferment the recombinant E.coli BL21(DE3) / pET28a(+)-pulA to generate enzyme by adopting the dual-temperature control mode of firstly culturing at 37 DEG C for 2-4 hours and then continuing culture at 25 DEG C for 48-72 hours; and after adopting the optimized fermentation conditions of the auto-induction culturemedium and dual-temperature, the extracellular pullulanase activity can reach 60-70U / mL. The method provides an effective strategy for producing extracellular pullulanase with recombinant E.coli and has great significance in the production process for developing novel recombinant pullulanase in future and application value of pullulanase.
Owner:JIANGNAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products