Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

68results about How to "Good cycle stability" patented technology

Transition metal sulfide coated with carbon, preparation method and application

A transition metal sulfide coated with carbon, a preparation method and an application relate to transition metal sulfide. The transition metal sulfide coated with the carbon comprises a nucleus and a coating layer on the surface of the nucleus, wherein the nucleus is a transition metal sulfide nucleus, and the coating layer is a carbon coating layer. The preparation method comprises the steps as follows: dissolving the transition metal sulfide in water, adding a carbon source, and coating the surface of the transition metal sulfide with carbon. The transition metal sulfide coated with the carbon is applied to preparation of an electrode material, and the electrode material could be a battery electrode material or the like, and is specifically used as an electrode active material to be applied in a secondary battery. The transition metal sulfide coated with the carbon is greatly improved in conductive performance, further improved in charge and discharge capacity and rate capability, greatly improved in coulombic efficiency and cycle performance, and low in material cost and simple in preparation process. The composite material used as an electrode material of a secondary lithium battery has high energy density, excellent cyclicity, and especially excellent rate capability, and is safe and reliable.
Owner:XIAMEN UNIV

Lithium nitride/ceramic base composite material with high activity lithiation/delithiation performance

The invention belongs to the field of lithium ion batteries and super-capacitors, and in particular relates to a lithium nitride/ceramic-based composite anode material and a preparation method thereof, wherein the lithium nitride/ceramic-based composite anode material is prepared by a mechanochemical method and has high specific capacity, electrochemical lithium intercalation-detercalation reversibility and steady cycle performance. The composite material is a composite material which takes lithium nitride as an activity reinforced body and ceramic powder containing silicon element as a matrix; in the composite material, the chemical bonding is taken as a main interfacial bonding mode between the reinforced body and the matrix, the reinforced body and the matrix have good structural stability, and the mol ratio of the reinforcement body to the matrix is 1: 1-9: 1. The material has better electrochemical cycle performance and rate performance; and the material has a wider voltage window, has good ionic conductivity and cyclicity, and has potential application value in novel super-capacitor electrode materials. The preparation method is simple and easy to control, and the needed raw materials do not contain heavy metal elements and have the advantages of environmental protection and low cost.
Owner:DALIAN MARITIME UNIVERSITY

Carbon-decorated porous lithium vanadium phosphate nanosphere material as well as preparation method and application thereof

The invention discloses a carbon-decorated porous lithium vanadium phosphate nanosphere material as well as a preparation method and application thereof. Lithium vanadium phosphate particles coated with a carbon layer are connected with one another to form the carbon-decorated porous lithium vanadium phosphate nanosphere material which is characterized in that lithium vanadium phosphate particles are connected with one another by a three-dimensional carbon net, and the three-dimensional carbon net covers lithium vanadium phosphate. The preparation method comprises the following steps: adding a vanadium source, namely vanadium pentoxide, and oxalic acid into distilled water, and agitating until vanadium pentoxide and oxalic acid are dissolved; sequentially adding a phosphorus source, a lithium source, glycol and ethylenediamine; carrying out hydrothermal reaction on the materials to obtain a precursor solution; drying the precursor solution to obtain a red brown solid; and grinding, pre-sintering, grinding and calcining the solid to finally obtain the black three-dimensional carbon-decorated porous lithium vanadium phosphate nanosphere material. When being used as a positive active material of a lithium ion battery, the carbon-decorated porous lithium vanadium phosphate nanosphere material has the characteristics of high power and high cycling stability; the preparation process is simple, and the nanosphere material can be obtained by combining a hydrothermal method with a solid-state sintering method; the nanosphere material is high in feasibility and easy to amplify, meets the requirements of green chemistry, and is suitable for market popularization.
Owner:皮玉强

Preparation method and application for nanosheet formed by carbon-coated titanium dioxide nanotube

The invention relates to a preparation method and an application for a nanosheet formed by a carbon-coated titanium dioxide nanotube, and belongs to the technical field of lithium ion battery electrode material preparation. The preparation method comprises the steps of preparing the nanosheet formed by the titanium dioxide nanotube firstly; then performing a hydrothermal reaction between the nanosheet formed by the titanium dioxide nanotube and a glucose solution, and performing carbonization to obtain the nanosheet formed by the carbon-coated titanium dioxide nanotube; makingthe nanosheet formed by the carbon-coated titanium dioxide nanotube react with a potassium permanganate solution to obtain the manganese dioxidecoated nanosheet formed by the carbon-coated titanium dioxide nanotube; performing a hydrothermal reaction between the manganese dioxidecoated nanosheet formed by the carbon-coated titanium dioxide nanotube and a ferric salt-containing solution, and then performing annealing to obtain the nanosheet formed by the carbon-coated titanium dioxide nanotube loaded with iron trioxide. The nanosheet prepared by the invention is used as the lithium battery positive electrode material for assembling batteries and the prepared lithium ion battery is relatively high in the specific discharge capacity.
Owner:KUNMING UNIV OF SCI & TECH

Cobalt nickel manganese lithium oxide-cooper oxide compound positive material for lithium ion battery and preparation method thereof

The invention discloses a cobalt nickel manganese lithium oxide-cooper oxide compound positive material for a lithium ion battery and a preparation method thereof. The compound positive material is obtained by coating cooper oxide on the surface of cobalt nickel manganese lithium oxide; and the chemical general formula of the compound positive material is LiCoxNiMn(1-x-y)O2/CuO, wherein x is large than or equal to 0.2 and less than or equal to 0.4, and y is more than or equal to 0.3 and less than or equal to 0.7. The preparation method comprises the following steps: preparing cobalt nickel manganese lithium oxide ternary compound oxide lithium salt by a high temperature solid method; and then coating the copper oxide on the surface of the cobalt nickel manganese lithium oxide through high-temperature sintering so as to obtain the cobalt nickel manganese lithium oxide-cooper oxide compound positive material for the lithium ion battery. The material provided by the invention has the advantages of high specific capacity, good circulation characteristic, short production period and the like, is suitable for industrial production, and can be applied to the fields of electromobiles, energy storing equipment, electric power tools and the like.
Owner:HEFEI UNIV OF TECH

Preparation method of growing needle-shaped network-structure nickel cobalt flexible electrode by taking carbon fiber as support body

InactiveCN109449011AGood electrochemical performance and lifetimeGood cycle stabilityHybrid capacitor electrodesHybrid/EDL manufactureElectrospinningUrea
A preparation method of growing a needle-shaped network-structure nickel cobalt flexible electrode by taking carbon fiber as a support body comprises the steps of preparing a carbon fiber precursor from a PAN solution by an electrospinning method, performing pre-oxidization processing, and performing low-temperature carbonization to obtain a flexible carbon fiber; immersing the flexile carbon fiber in a mixed solution of a nickel salt and a cobalt salt, performing hydrothermal reaction by taking urea as a precipitant, and performing calcination. The preparation method is simple to operate andis low in cost, the prepared carbon fiber substrate is good in flexibility, the space among the fibers is larger, residual surface treatment is not needed due to an oxygen-containing functional group,the needle-shaped nickel cobalt is grown to form a unique network structure and is uniformly distributed in a flexible carbon fiber framework structure, the flexible electrode material is combined with favorable cycle stability of the carbon material and high energy density and specific capacity of the nickel cobalt, the electrochemical performance of the electrode is integrally improved, and theservice lifetime also can be remarkably prolonged.
Owner:SHAANXI UNIV OF SCI & TECH

Preparation method capable of increasing electrochemical performance of magnesium-sodium-doped lithium permanganate anode material

The invention discloses a preparation method capable of increasing the electrochemical performance of a magnesium-sodium-doped lithium permanganate anode material. The preparation method includes the steps of firstly, dissolving manganese sulfate monohydrate into deionized water, and dropwise adding anhydrous ethanol; secondly, dissolving ammonium bicarbonate into deionized water; thirdly, mixing the obtained solutions, stirring, aging, performing precipitation and suction filtration, washing, and drying to obtain manganese carbonate; fourthly, pre-sintering the manganese carbonate, washing with hydrochloric acid, performing suction filtration, washing, and drying to obtain manganese dioxide; fifthly, grinding a lithium source, the manganese dioxide, a magnesium ion doping source and a sodium ion doping source, sintering, and cooling to obtain the magnesium-sodium-doped lithium permanganate anode material Li1-xNaxMgyMn2-yO4, wherein x=0.01-0.2, and y=0.01-0.2. The preparation method has the advantages that the method is simple in process, environmentally friendly, low in cost and capable of preparing the well-crystallized magnesium-sodium-doped lithium permanganate anode material even in distribution, and the electrochemical performance of the material is increased evidently.
Owner:GUILIN UNIVERSITY OF TECHNOLOGY

Vanadium-lithium phosphate composite material for positive electrode of lithium ion battery and preparation method thereof

The invention discloses a vanadium-lithium phosphate composite material for a positive electrode of a lithium ion battery. The material is powder which is formed by coating surface of Li3V2(PO4)3 with multi-wall carbon nanotube-modified amorphous carbon in situ; and the material comprises 95 to 98 mass percent of Li3V2(PO4)3 and 2 to 5 mass percent of carbon. A preparation method of the material comprises the following steps of: mixing Li2CO3, NH4H2PO4 and NH4VO3 serving as raw materials according to a stoichiometric ratio of the Li3V2(PO4)3; adding the multi-wall carbon nanotubes and polyvinyl alcohol into the mixture; adding anhydrous alcohol into the mixture and mixing the mixture by ball milling on a ball mill; and calcining the mixture in an argon atmosphere to obtain the material. The vanadium-lithium phosphate composite material of the invention is used for the positive electrode of the lithium ion battery, has the advantages of high charging and discharging capacity, high cyclical stability, superior high-rate performance and high material conductivity and is suitable for providing a power energy source for portable electric tools, electric motorcycles, electric automobiles and the like.
Owner:ZHEJIANG GODSEND POWER TECH +1

Silicon-based negative electrode material for lithium ion battery and preparation method of silicon-based negative electrode material

The invention relates to a silicon-based negative electrode material for a lithium ion battery and a preparation method of the silicon-based negative electrode material and belongs to the field of lithium ion battery negative electrode materials. The silicon-based negative electrode material is prepared by taking silicon and silica as raw materials by a ball-milling method, and is a composite material formed by mutually contacting the silicon and silica particles and uniformly distributing the particles in a three-dimensional space on a micro scale, wherein the particle size of the two kinds of particles is 50-300nm. In the ball milling process, the particle size is obviously reduced when the two raw materials are uniformly mixed, and compared with a bulk material, the material disclosed by the invention is capable of effectively releasing stress produced by lithium insertion. Meanwhile, the electrochemical activity of the silica in the grinding process is improved. The capacity of thenegative electrode material is maintained at 800-2000mAhg<-1> under the current density of 0.5Ag<-1> after 200 cycles. The composite material fully achieves the characteristics of high specific capacity of the silicon material and excellent cycling stability of the silica, the respective advantages of the two materials are complemented, and volume expansion of the silicon-based material in the charging and discharging process is buffered by an irreversible phase produced in the lithium insertion process by utilizing the silica material.
Owner:ZHEJIANG UNIV OF TECH

Method for preparing surface-coated anode material of lithium battery

The invention discloses a method for preparing a surface-coated anode material of a lithium battery. The method comprises the steps of: mixing an anode material, namely lithium iron phosphate, with lithium nickel cobaltate, magnesium nitrate and cobalt oxide, heating an obtained mixture to the temperature above a melting point of the magnesium nitrate for reaction, and then cooling; performing ball milling for crushing, and sieving; placing a lithium hydroxide saturated solution in a spraying system, controlling the spraying system to spay in a mixing drying kettle, continuously starting a mixer, placing aluminum sulfate which is in exact complete reaction with the lithium hydroxide into the spraying system, controlling the spraying system to spray into the mixing and drying kettle, continuously mixing after spraying to complete hydrolysis reaction uniformly; drying a mixture obtained after hydrolysis reaction; and carrying out thermal treatment, crushing and sieving to obtain the surface-coated anode material of the lithium battery. The surface-coated anode material prepared according to the invention is uniform in coating and thus has good cyclic stability and high-quality specific capacity, and is high in capacity, good in cyclic stability and long in service when applied to the lithium ion battery.
Owner:ZHEJIANG MEIDU HITRANS LITHIUM BATTERY TECHNOLOGY CO LTD

Preparation method for positive electrode material lithium cobalt iron phosphate for lithium ion battery

The invention provides a preparation method for a positive electrode material lithium cobalt iron phosphate for a lithium ion battery. The chemical formula of lithium cobalt iron phosphate is LiFe<x>Co<1-x>PO<4>/C, wherein x is greater than or equal to 0.1 and less than or equal to 0.2; the preparation method comprises the steps of adding phosphoric acid into deionized water to prepare a phosphoric acid solution; adding reduced iron powder under a stirring state, enabling the mixture to be reacted to obtain a clear mixed solution; adding a lithium hydroxide solution to the mixed solution; after the solution is cooled, adding the cooled solution to a nanometer ball mill, and adding cobalt hydroxide; carrying out ball milling on the mixture, and then adding a caramel solution, stirring uniformly the ball-milled product, and spraying and drying the product to obtain a spherical lithium cobalt iron phosphate/carbon composite material precursor powder; and calcining the precursor powder at a temperature of 600-700 DEG C under a nitrogen atmosphere to obtain the positive electrode material for the lithium ion battery. The positive electrode material for the lithium ion battery obtained by the invention has relatively high energy density and high cycle performance, and can be expected to be the new generation of high-energy-density positive electrode material for the lithium ion battery.
Owner:SHANGHAI INSTITUTE OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products