Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

621results about How to "High surface area" patented technology

Elastomer composite blends and methods-II

Elastomer composite blends are produced by novel wet/dry mixing methods and apparatus. In the wet mixing step or stage, fluid streams of particulate filler and elastomer latex are fed to the mixing zone of a coagulum reactor to form a mixture in semi-confined flow continuously from the mixing zone through a coagulum zone to a discharge end of the reactor. The particulate filler fluid is fed under high pressure to the mixing zone, such as to form a jet stream to entrain elastomer latex fluid sufficiently energetically to substantially completely coagulate the elastomer with the particulate filler prior to the discharge end. Highly efficient and effective elastomer coagulation is achieved without the need for a coagulation step involving exposure to acid or salt solution or the like. Novel elastomer composites are produced. Such novel elastomer composites may be cured or uncured, and combine material properties, such as choice of filler, elastomer, level of filler loading, and macro-dispersion, not previously achieved. The coagulum produced by such wet mixing step, with or without intermediate processing steps, is then mixed with additional elastomer in a dry mixing step or stage to form elastomer composite blends. The additional elastomer to the coagulum may be the same as or different from the elastomer(s) used in the wet mixing step.
Owner:CABOT CORP

Pyrolysis gasoline nickel system selective hydrogenation catalyst and preparation method thereof

The invention provides a pyrolysis gasoline nickel system selective hydrogenation catalyst and a preparation method of the pyrolysis gasoline nickel system selective hydrogenation catalyst and belongs to a catalyst containing metal or metal oxide or hydroxide. The pyrolysis gasoline nickel system selective hydrogenation catalyst is characterized by being provided with a mesopore-macropore or double-mesopore compound pore channel, taking aluminum oxide as a carrier, taking nickel as a main active component, taking molybdenum as an auxiliary active component and taking the metal oxide as an auxiliary agent; the pyrolysis gasoline nickel system selective hydrogenation catalyst is composed of following components in parts by weight: 15-19 parts of nickel oxide, 6.5-20 parts of molybdenum oxide, 2.2-4.5 parts of the auxiliary agent and the balance of the aluminum oxide; the auxiliary agent is one or the combination of more than two of potassium oxide, magnesium oxide and lanthanum oxide. The invention provides the pyrolysis gasoline nickel system selective hydrogenation catalyst which is large in pore capacity and high in specific surface, has good reaction activity, high hydrogenation reaction selectivity, good stability, good arsenic dissolving and glue resisting capabilities and is provided with the compound pore channel, and the preparation method of the pyrolysis gasoline nickel system selective hydrogenation catalyst. When the catalyst is used for selectively hydrogenating full-fraction pyrolysis gasoline, the average diene hydrogenation rate is 99%.
Owner:CHINA PETROLEUM & CHEM CORP

Catalyst for synthesizing methanol by hydrogenating carbon dioxide and preparation method thereof

The invention relates to a catalyst for synthesizing methanol by hydrogenating carbon dioxide and a preparation method thereof, belonging to the technical field of catalysts. The catalyst for synthesizing the methanol by hydrogenating the carbon dioxide comprises a mixed oxide of one or more of Cu, Zn, La, Ce and M, wherein M is Al, Si, Ti or Zr; the catalyst comprises the following components in percentage by weight: 30-70% of CuO, 10-40% of ZnO, 1-5% of accelerative activators Ln2O3, 1-5% of stabilizers CeO2 and 5-20% of carrier oxides MxOy. The preparation method of the catalyst comprises the following steps of: firstly mashing the carrier oxides MxOy; and then adding active matter components and precipitators into oxide slurry in a parallel flowing manner for coprecipitation. The catalyst disclosed by the invention has the advantages of high specific surface reaching 200 m<2> / g, stable structure, contact compactness among all the components and high synergistic effect, so that the catalyst has higher activity and selectivity; the preparation process of the catalyst has the advantages of simplicity, good repeatability and convenience for industrial production; in addition, by means of the catalyst disclosed by the invention, the conversion rate of the carbon dioxide is high and reaches 35 percent under appropriate reaction conditions, and the selectivity of the methanol is higher and reaches more than 80 percent.
Owner:大连瑞克科技股份有限公司

Dechlorinating agent used for removing HCl from gas by dry method and preparation method thereof

InactiveCN101773768AImprove dechlorination activityHigh activityOther chemical processesAluminium silicatesPorosityCross-link
The invention relates to a dechlorinating agent used for removing HCl from a gas by using a dry method and a preparation method thereof. The dechlorinating agent is prepared from Na2CO3, CaCO3, CaO and MaO as active constituents, crosslinked bentonite as a porous auxiliary agent, and methyl cellulose as a foaming agent and an auxiliary extrusion agent through extrusion forming, drying and roasting. The cross-linked bentonite is prepared by exchanging large-size poly aluminum cation with small-size simple cation, so that the crosslinked bentonite has great porosity factor and large specific surface. The specific surface and the pore volume of the crosslinked bentonite are larger than those of non-crosslinked bentonite. By using the crosslinked bentonite as the porous auxiliary agent, the specific surface of the dechlorinating agent is enlarged, and the dechlorinating activity and the chlorosity of the dechlorinating agent are increased. The dechlorinating agent prepared by using the crosslinked bentonite has a pore volume of 0.3-0.4 mL/g, a specific surface of 70-90 m<2>/g and a crushing strength of 60-80 N/cm, not only has lower price than pseudo-boehmite and a molecular sieve, but also has simple preparation process, high dechlorinating activity and great low-temperature penetration chlorosity.
Owner:长春惠工净化工业有限公司

Method for preparing high-thermal-stability cerium-based oxygen storage material

The invention relates to a method for preparing a high-thermal-stability cerium-based oxygen storage material, which is characterized in that the cerium-based oxygen storage material comprises cerium dioxide, zirconium dioxide, aluminum oxide in a small amount and at least one rare-earth crystal stabilizer selected from lanthanum oxide, praseodymium oxide, yttrium oxide and terbium oxide. The method comprises the following steps in the preparation process: adding a proper amount of surfactant, to obtain a cerium-based composite oxide material having the characteristics of single crystalline phase, high oxygen storage performance and high specific surface area; and ageing the cerium-based composite oxide material at a high temperature (1,050 DEG C) for 5h until the specific surface area thereof is higher than 35m<2>/g and the oxygen storage capacity thereof is higher than 400 mu mol/g. According to the phase results, the cerium-based oxygen storage material has a uniform-phase structure, moreover, a uniform solid solution with a cubic fluorite structure can be prepared from zirconium dioxide, aluminum oxide, stabilizer and cerium dioxide. The preparation process of the oxygen storage material has the characteristics of simple process, lower production cost, easy industrial scale-up, etc.
Owner:CHINA NAT OFFSHORE OIL CORP +1

Preparation method for zirconium-contained rare-earth composite oxide

The invention relates to a preparation method for a zirconium-contained rare-earth composite oxide. At a certain ratio, rare earth (cerium, yttrium, praseodymium or terbium) is mixed with zirconium to burden, or rare earth (cerium, yttrium, praseodymium or terbium) and zirconium are mixed with at least one of other metal ions (aluminum, barium, magnesium, strontium, titanium, manganese, ferrum, copper and hafnium) to burden. A magnesium bicarbonate or/ and calcium bicarbonate aqueous solution prepared from raw materials of magnesium or/ and calcium minerals or oxides and hydroxides by at least one working procedure of roasting, digesting, mixing size, carbonizing and the like can serve as a precipitator to carry out precipitation so as to obtain at least one of rare earth and zirconium composite carbonate and subcarbonate, and the at least one of rare earth and zirconium composite carbonate and subcarbonate is further roasted to obtain a zirconium-contained rare-earth composite oxide product. In the preparation method, cheap calcium or/ and magnesium minerals or low-purity oxides and hydroxides can serve as initial raw materials to replace common chemical industry precipitators, such as ammonia water, ammonium bicarbonate, sodium carbonate, sodium hydroxide and the like, substances, such as magnesium, calcium, carbon dioxide and the like can be effectively circulated and utilized so as to greatly lower the production cost of the zirconium-contained rare-earth composite oxide, such as ceria-zirconia, yttrium zirconium, praseodymium zirconium, terbium zirconium and the like. In addition, in the production technology disclosed by the invention, no ammonia nitrogen wastewater, high-salinity wastewater and the like are generated, carbon dioxide greenhouse gas emission amount is reduced, the preparation technology is environmentally-friendly, and environment pollution is avoided.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Nano hydrogenation catalysts composition and method of producing the same

The invention discloses nano-composite hydrogenation catalyst composition and a preparation method thereof. The catalyst composition includes active metal oxide and the composition of porous melt-resistant inorganic oxide. By utilizing the property that the precursors of the melt-resistant inorganic oxide, promoter oxide and the active metal oxide can form super-solubility nanometre micelle under the existence of surfactant with the VB value less than 1 and hydrocarbon composition, the invention facilitates the precursors and the hydroxide formed by precipitant to be in situ synthesized inside a micelle, so as to avoid the augment of the particle diameter of the oxide, and to facilitate the particle diameter to be in a single dispersed state. The catalyst of the invention has high specific surface area, large pore volume, large pore diameter, wide application range and good activity stability. The method of the invention has the advantages that the nano particle diameter is easy to be controlled, the distribution range of the particle diameter is narrow and the proportion of the carrier and the active component can be adjusted. The amount of the surfactant and the hydrocarbon component used for the method of the invention is less, and the cost is low.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products