Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

179results about How to "Lower catalyst costs" patented technology

Process for effectively hydrolyzing cellulose in ion liquid

The invention relates to cellulosic hydrolysis, in particular to a method for high-efficiently hydrolyzing celluloses in ionic liquid. In the method, the ionic liquid in which celluloses are dissolved is used as solvent, and water, the equivalent weight of which is more than or equal to 1 mol, is used as reactant, and inorganic acids, the catalytic amount of which is the stoichiometric amount, are used as catalyst, and celluloses are reacted under the conditions of the normal pressure and the temperature of between 70 to 100 DEG C for 2min to 9hr; after the reaction is over, celluloses undergo the cold water quenching reaction and the alkali neutralization reaction, and the cellulose hydrolysate is obtained; total reducing sugar and glucose in the cellulose hydrolysate are taken with quantitative chemical analysis, and results of which show that the highest yield of reducing sugar is 73 percent, and correspondingly the yield of glucose is 53 percent. Compared with the conventional hydrolysis method, the method of the invention has the advantages of unnecessary pretreatment, mild reaction conditions, high hydrolytic activity, quick reaction speed, little acid consumption, low requirement on corrosion resistance of a reactor and easy tracking and controlling of the extent of reaction; the method opens a new road for resolving the lasting problem of the complete utilization of lignocelluloses.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Iron-based catalyst for low-carbon olefin production through CO2 hydrogenation, and preparation and applications thereof

The present invention provides an iron-based catalyst for low-carbon olefin production through CO2 hydrogenation, wherein the main active component of the catalyst is Fe3O4, the auxiliary agent is added or is not added, and is an oxide, the content of the auxiliary agent accounts for 0-30% of the total mass of the catalyst, and the auxiliary agent is one or more than two selected from the oxide of Si, Al, Mn, K, Cu, Na, Zr, V, Zn and Ce. The present invention further provides a preparation method and applications of the catalyst. According to the present invention, the catalyst has the following beneficial effects that 1) the particles have characteristics of regular spherical shape, uniform spatial distribution, and narrow size distribution; 2) the raw materials are inexpensive and easy to obtain, and the preparation method has characteristics of simpleness and low cost, and is suitable for industrial production; 3) the catalyst has characteristics of high mechanical strength, good wear resistance and compression resistance, and is suitable for the fixed bed, the fluidized bed and the slurry bed; 4) the CO2 hydrogenation activity and the low-carbon olefin selectivity are high, the single-pass conversion rate can achieve more than 40%, the methane selectivity in the hydrocarbon product is lower than 15%, the low-carbon olefin selectivity is higher than 40%, the alkene/alkane ratio (O/P) is 2-12, and the yield of the low-carbon olefin can achieve 10-60 g/m<3> (CO2+H2).
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Anion modified mercury-free catalyst for ethyne hydrochlorination reaction, and preparation method thereof

The invention discloses an anion modified mercury-free catalyst for an ethyne hydrochlorination reaction, and a preparation method thereof. The catalyst comprises a catalyst carrier and an active component, wherein the catalyst carrier is active carbon, the active component is a sulfate, a chloride, a phosphate or a pyrophosphate of copper or tin, and the carrier is acid-washed active carbon or phosphorus doped active carbon. The preparation method comprises preparing an active component impregnating solution, adding a catalyst carrier to carry out equivalent volume impregnation, drying, baking and other process steps. According to the present invention, acetylene and hydrogen chloride are mixed and then are subjected to a reaction in the catalyst system, wherein the catalysis system of the present invention has characteristics of environmental protection and safety compared with the current mercury catalyst in the industry; and the catalyst prepared by the preparation method has characteristics of high activity, high selectivity, good stability, and longer service life, and is more suitable for ethyne hydrochlorination reactions for producing vinyl chloride through a calcium carbide method compared with the general mercury-free catalyst.
Owner:TIANJIN UNIV

Method for highly selectively catalyzing epoxidation between olefin and air by cobalt-loaded zeolite molecular sieve

The invention relates to a chemical reaction process for preparing an epoxide by multi-phase catalytic oxidation, in particular to a method for highly selectively catalyzing epoxidation between olefin and air by a cobalt-loaded zeolite molecular sieve. Cobalt which is a non-precious transition metal and has a catalytic activity is exchanged to zeolite molecular sieve frameworks of different apertures and structures according to a certain loading proportion by an ion exchange method to prepare a cobalt-loaded zeolite molecular sieve based catalyst; and such olefine compounds as styrene class, Alpha, Beta-pinene class, cycloolefin class, Beta-cinnamyl chloride class and linear olefin class are catalyzed to perform epoxidation reaction in a solvent at a certain reaction temperature for a certain reaction time by taking air at a certain flowing rate as an oxidant (a small amount of t-butylhydroperoxide (TBHP) as initiators) without adding any reducing agent. The method has the advantages that the catalyst is simple in preparation, the raw material is high in conversion rate, the target product is high in selectivity, the reaction is short in time, high in efficiency and mild in condition, the operation is easy to control, the cost is low and the whole environment is environment-friendly.
Owner:HUBEI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products