Disclosed is a method of manufacturing an assembly of components joined by brazing, comprising the steps of:(i) forming the components of which at least one is made from a multi-layered brazing sheet product, the multi-layered brazing sheet product comprising a core sheet (a) having on at least one surface of the core sheet an aluminium clad layer (b), the aluminium clad layer being made of an aluminium alloy comprising silicon in an amount in the range of 2 to 18% by weight, a layer (c) comprising nickel on the outer surface of the aluminium clad layer, and a layer (d) comprising zinc or tin as a bonding layer between the outer surface of the aluminium clad layer and the layer comprising nickel;(ii) forming at least one other component of a metal dissimilar to the core sheet of the multi-layered brazing sheet product and selected from the group consisting of titanium, plated titanium, coated titanium, bronze, brass, stainless steel, plated stainless steel, coated stainless steel, low-carbon steel, plated low-carbon steel, coated low-carbon steel, high-strength steel, coated high-strength steel, and plated high-strength steel;(iii) assembling the respective components into an assembly such that the layer (c) comprising nickel of the multi-layered brazing sheet product faces in part or in whole the at least one other component of a metal dissimilar to the core sheet of the multi-layered brazing sheet product;(iv) brazing the assembly under a vacuum or in an inert atmosphere in the absence of a brazing-flux at elevated temperature for a period long enough for melting and spreading of the aluminium clad layer and all layers exterior thereto;(v) cooling the brazed assembly.The invention further relates to an assembly manufactured using the method of this invention.