Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

87results about How to "Strong structural controllability" patented technology

Three-dimensional fiber-based aerogel catalyst carrier and preparation method thereof

The invention relates to a preparation method of a three-dimensional fiber-based aerogel catalyst carrier and a product thereof. The preparation method comprises the following steps of: firstly dispersing fibers in solvents to form turbid liquid; secondly curing the turbid liquid to form cured pieces; thirdly removing cured solvents to form non-crosslinked fiber-based aerogel; finally carrying out crosslinking stabilization treatment and then carrying out activation treatment, thus obtaining the three-dimensional fiber-based aerogel catalyst carrier. The product is a three-dimensional network-shaped material formed through mutual penetration and stagger of fibers. The fiber crossing points are effectively interconnected through non-hydrogen-bond bonding. The three-dimensional fiber-based aerogel catalyst carrier has volume density of 0.1-500mg / cm<3>, average pore size of 0.01-2000mu m and specific surface area of 0.2-2000m<2> / g. The preparation method and the product have the advantages that the preparation process is simple; the raw material limitations are less; and the aerogel catalyst carrier product has good flexibility, connectivity and catalyst supporting capacity and has broad application prospects in the catalytic application field.
Owner:DONGHUA UNIV

Efficient and low-resistance electrospun nanofiber air filter material and batch preparation method

The invention relates to an efficient and low-resistance electrospun nanofiber air filter material and a batch preparation method. The filter material is of a sandwich structure formed by alternately arraying spun-bonded nonwovens and nanofibers; by the adoption of a pinfree type electrostatic spinning nozzle and by an electrostatic spinning and electrostatic spraying synchronous combination technology, a nanofiber/microsphere composite film is prepared; a revolving rotary drum is used as a receiving device, and the spun-bonded nonwoven is used as a receiving matrix, so that a nanofiber/nonwoven composite material is obtained; a layer of spun-bonded nonwoven covers the surface of the nanofiber/nonwoven composite material to form the sandwich structure with the spun-bonded nonwovens and the nanofibers which are alternately arrayed; the sandwich structure is bonded to obtain the efficient and low-resistance electrospun nanofiber air filter material. The preparation process is simple, and high in controllability and repetitiveness, and the prepared air filter material has the characteristics of high efficiency and low resistance, and is uniform in thickness and stable in filter performance; batch production of the nanofiber filter material can be realized; the efficient and low-resistance electrospun nanofiber air filter material has very good application prospect in the field of air filtering.
Owner:DONGHUA UNIV

Strengthened polysulfone nano-fiber air filter membrane and electrostatic spinning preparation method thereof

The invention relates to a strengthened polysulfone nano-fiber air filter membrane and an electrostatic spinning preparation method thereof. The preparation method comprises the following steps of firstly, dissolving polysulfone in solvents with different melting points and different solubility parameters to form uniform liquor; and then, carrying out electrostatic spinning on the liquor by a plurality of spray heads to obtain a crossing-point adherent-nonadherent three-dimensional interpenetrating network structure polysulfone membrane. The product is a three-dimensional network shaped material which is formed by interpenetrating and alternating adherent-nonadherent fibers, wherein crossing points in the fibers are interconnected in an adherent manner by virtue of effective non-hydrogen bond bonding effects, wherein gram weight is 0.01g / m<2>-25.5g / m<2>, breaking strength is 16.1 MPa-48.6 MPa, abrasive resistance is 500 rings-2100 rings, filter efficiency for particles of 0.01 micron-5 microns reaches over 99.99%, and resistance drop is below 30Pa. According to the invention, the preparation process is simple, the cost is low, and a fiber membrane product has wide application prospect in the hyperfine filter filed.
Owner:DONGHUA UNIV

Copper oxide micro-nano composite structural material and preparation method thereof

The invention discloses a copper oxide micro-nano composite structural material, which consists of CuO microspheres with nano flaky secondary structures, fan-shaped / bar-shaped CuO and CuO nanosheets in any ratio, wherein the CuO microspheres are 7-10 microns in diameter, and are formed by self-assembling nanosheets; the fan-shaped / bar-shaped CuO is formed by self-assembling bar-shaped CuO; and CuO bars are 6-12 microns in length and 400-600 nanometers in diameter. The copper oxide micro-nano composite structural material can be taken as a solar energy transformation material, a photocatalyst and a fluorescent material. A preparation method of the copper oxide micro-nano composite structural material comprises the following step of: preparing by taking copper chloride, ammonia water and sodium hydrate as raw materials and taking sodium dodecylbenzene sulfonate as a template under a low-temperature condition with a hydro-thermal method. The preparation method has the advantages of mild reaction condition, easiness for operating, low preparation cost, high product structure controllability, high repeatability and easiness for realizing large-scale production, contributes to large-scale popularization and application, and has great production and practical meanings.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Needle-like copper hydroxide material based on copper grid, preparation method and oil-water separating method

The invention relates to a needle-like copper hydroxide material prepared based on copper grid surface in-situ growth, a preparation method and an oil-water separating method. The needle-like copper hydroxide material grows on a copper grid in an in-situ mode and has a hydrophilic and oleophilic surface or a hydrophobic surface structure. The preparation method comprises the steps: (1) cleaning the copper grid up; (2) putting the copper grid in a sodium hydroxide and ammonium persulfate mixed solution to react; (3) repeatedly putting the copper grid or no putting the copper grid into the sodium hydroxide and ammonium persulfate mixed solution with a progressively-decreasing concentration to react according to need; (4) finally, directly putting the copper grid into the sodium hydroxide andammonium persulfate mixed solution with the concentration which is further reduced or deionized water to react and preparing needle-like copper hydroxide on the surface of the copper grid; (5) performing hydrophobic treatment on the copper grid according to need to obtain super-hydrophobic needle-like copper hydroxide on the surface of the copper grid. The needle-like copper hydroxide material disclosed by the invention has the advantages of simple method, easiness in operation and suitability for large-area preparation. The copper grid can be applied oil-water separation and has a higher oil-water separating efficiency.
Owner:XUCHANG UNIV

Preparation method for polymer-based density-gradient foam material

ActiveCN107283709AChange density distributionImplement gradient changesMicron scaleMetal particle
The invention discloses a preparation method for a polymer-based density-gradient foam material. The preparation method specifically comprises the following steps: firstly, mixing a mixed system of micron metal particles and a polymer through high-temperature mixing to obtain composite material melts with different densities; secondly, carrying out melting hot-pressing on the melts at a high temperature separately to obtain a density-gradient composite material; and finally, foaming the density-gradient composite material through supercritical carbon dioxide foaming to obtain the polymer-based density-gradient foam material. According to the preparation method disclosed by the invention, the polymer-based density-gradient foam material is prepared from combining a lamination hot-pressing process with a supercritical carbon dioxide foaming technology, the density of the material is adjustable in a range from 0.2g / cm<3> to 1.96g / cm<3>, and the density of a sample presents gradient change at different positions; the diameter of the material is in a micron scale, and the material is high in dimensional stability, structural controllability and mechanical strength, and has wide application prospects in the fields of cushion packaging, impact protection, aerospace, transportation, building energy conservation and the like.
Owner:WUHAN UNIV OF TECH

Carbon-based non-metallic oxygen reduction catalyst as well as preparation method and application thereof

The invention belongs to the field of electrochemistry catalysis and particularly discloses a carbon-based non-metallic oxygen reduction catalyst as well as a preparation method and an application thereof. The carbon-based non-metallic oxygen reduction catalyst is a polymer which is prepared by doping other heteroatom (e.g. B, O, F, P, S, Cl, Br and I) derived from an N-contained polymerization product which is obtained by polymerizing aromatic nitrile compounds. The catalyst provided by the invention is high in conductivity, has a carbon skeleton structure with a high specific surface area and can be doped with many kinds of heteroatom. The catalyst has good oxygen reduction activity and high stability and is free from influence of methanol and carbon monoxide; besides, the catalyst is wide in application scope and is suitable for various systems containing oxygen reduction reaction, including a lithium air cell, a sodium air cell, kinds of fuel cells and so on; compared with an existing commercial platinum carbon (Pt/C) catalyst, the catalyst has the advantage of simple preparation, efficiency, environment friendliness, low cost and excellent performance.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

Preparation method of pomegranate-shaped organic-inorganic nano-composite microspheres

The invention discloses a preparation method of pomegranate-shaped organic-inorganic nano-composite microspheres, which comprises the following steps: mixing an aqueous dispersion solution of silicon dioxide modified by proper amount of double-bond silane coupling agent in a coupling method with a phenylpropyl monomer, anionic emulsifier, non-anionic emulsifier and water, and stirring simply, so that a milky emulsified liquid is obtained; adding initiator to perform emulsion polymerization in the presence of silicon dioxide, so that the pomegranate-shaped organic-inorganic nano-composite microspheres with multiple silicon dioxide particles wrapped in phenylpropyl emulsion particles are obtained finally and are stably dispersed in the emulsified liquid. The preparation method has the advantages that the sources of the raw materials are extensive, the raw materials are easy to obtain, the preparation process is simple, and moreover, in the prepared pomegranate-shaped organic-inorganic nano-composite microspheres, the wrapping rate of silicon dioxide is high, the structure is neat and the placement stability is good. The adhesion property and the film forming performance of the composite microsphere particles are adjustable, the adhesive force and the transparency of the corresponding glue film are good, and the organic-inorganic nano-composite microspheres can be applied to the fields of coating, textile, rubber, plastics, biology, medicine and the like.
Owner:杭州华利实业集团有限公司

Three-dimensional hollow carbon foam electrode materials, preparation method of three-dimensional hollow carbon foam electrode materials and application of three-dimensional hollow carbon foam electrode materials

The present invention discloses a three-dimensional hollow carbon foam electrode materials, a preparation method of the three-dimensional hollow carbon foam electrode materials and an application of the three-dimensional hollow carbon foam electrode materials. The method concretely comprises the following steps: mixing zinc nitrate, fuel and deionized water to perform full stirring and dissolution, putting the mixed solution on an electric furnace for heating until viscidity cementing products are obtained, the products are arranged in a muffle furnace for annealing to obtain zinc oxide template materials with multi-stage holes, and preparing charcoal electrode materials with multistage apertures through adoption of a template method. Compared to the prior art, the reaction materials are wide in source, low in cost and environmentally friendly, the synthesis steps are simple, the raw materials is nontoxic and safe and mild in reaction condition, and the method for removal of temperature materials is unique so as to fit large-size production and commercialization application. The prepared multi-stage hole carbon materials have multistage aperture structures having micropores, mesoporouses and macroporouses, large in specific surface area, have excellent charge and discharge multiplying power characteristics and cycle stability in an application and can satisfy the application requirement of an electrochemistry power storage device.
Owner:HUNAN UNIV

Method for synthesis of mesoporous molecular sieve and byproduct cryolite by use of fluosilicic acid

InactiveCN105271244ASolve the problem of narrow industrial application fields and low industrial added valueEfficient use ofSilicon halogen compoundsAluminium fluoridesMesoporous materialSodium sulfate
The present invention discloses a method for synthesis of mesoporous molecular sieve and byproduct cryolite by use of fluosilicic acid. The aminated fluosilicic acid amide is added into a surfactant solution, heated, stirred, and uniformly dispersed; solution pH is adjusted to 3-7 with queous ammonia, and the solution is stirred and refluxed; the solution is filtered by suction and separated; the resulting filter cake is washed and dried to obtain a surfactant-containing mesoporous molecular sieve precursor, and mesoporous molecular sieve Si-MMS is obtained by pickling or roasting; if the fluorosilicic acid is mixed with an aluminum source or a titanium source, corresponding Si / Al-MMS or Si / Ti-MMS molecular sieve can be obtained; the resulting filtrate is treated with aqueous ammonia to adjust the pH to 4-7, the aluminum source is added, the pH is adjusted to 2 with an acid, the filtrate is heated to 50-100 DEG C and is thermally insulated for 10-50min; sodium sulfate solution is added, and the filtrate is thermally insulated for 0.5-1.5 h at 50-90 DEG C; and the filtrate is filtered, and the filter cake is washed, and dried to obtain the cryolite. According to the method, silicon as a silicon mesoporous material precursor is recycled, silicon recovery rate reaches 100%; fluorine in the filtrate is directly prepared into the cryolite, and the fluoride recovery rate reaches 98%.
Owner:WUHAN INSTITUTE OF TECHNOLOGY

Antioxidation/heat insulation integrated composite coating, polyimide composite coated with composite coating and preparation method of polyimide composite

The invention discloses an antioxidation/heat insulation integrated composite coating which is of a multilayer stacking structure and sequentially comprises a metal transition layer, a rare-earth silicate layer and a rare-earth zirconate layer from inside to outside. The invention further provides a polyimide composite coated with the composite coating. The polyimide composite comprises a fiber-reinforced polyamide resin matrix composite and a composite coating which is applied to the surface of the fiber-reinforced polyamide resin matrix composite; and the composite coating is the antioxidation/heat insulation integrated composite coating. The invention also provides a preparation method of the polyimide composite coated with the composite coating correspondingly. With the adoption of theantioxidation/heat insulation integrated composite coating, the long-time high temperature oxidation resistance and the short-time high temperature ablation resistance of the polyimide composite coated with the composite coating can be improved effectively, so that the application scope of the polyimide composite coated with the composite coating in the field of aviation and aerospace crafts is widened.
Owner:NAT UNIV OF DEFENSE TECH

A high-efficiency and low-resistance electrospun nanofiber air filter material and its batch preparation method

The invention relates to an efficient and low-resistance electrospun nanofiber air filter material and a batch preparation method. The filter material is of a sandwich structure formed by alternately arraying spun-bonded nonwovens and nanofibers; by the adoption of a pinfree type electrostatic spinning nozzle and by an electrostatic spinning and electrostatic spraying synchronous combination technology, a nanofiber / microsphere composite film is prepared; a revolving rotary drum is used as a receiving device, and the spun-bonded nonwoven is used as a receiving matrix, so that a nanofiber / nonwoven composite material is obtained; a layer of spun-bonded nonwoven covers the surface of the nanofiber / nonwoven composite material to form the sandwich structure with the spun-bonded nonwovens and the nanofibers which are alternately arrayed; the sandwich structure is bonded to obtain the efficient and low-resistance electrospun nanofiber air filter material. The preparation process is simple, and high in controllability and repetitiveness, and the prepared air filter material has the characteristics of high efficiency and low resistance, and is uniform in thickness and stable in filter performance; batch production of the nanofiber filter material can be realized; the efficient and low-resistance electrospun nanofiber air filter material has very good application prospect in the field of air filtering.
Owner:DONGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products