Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

260 results about "Nanocrystalline composites" patented technology

Method for preparing rare-earth iron series biphase nanocrystalline composite permanent-magnet material

The invention belongs to the field of magnetic material. At present much of the permanent magnet material is thin belt or powder, and since the custom sintering process for preparing block material will make the crystal grow, the magnetic property drops significantly. The steps of said invention comprises: the alloy whose component is RxFeyBz, in which R stands for rare-earth Nd or Pr element and the content of x is 4-10, y is 78-88, z is 6-18, is smelted for mother alloy in induction furnace in vacuum; Then preparing the quenched alloy in amorphous, nanometer crystalline state or amorphous-nanometer mixed state by smelting quick-quench method; the linear speed of smelting quick-quench is arranged between 10-50 m / s; under the protection of inertance gas, abrading the alloy into powder whose coarseness is lower than 80 items; encasing the powder into module to precompression and shaping, while range of pressure is 10-1000MPa; carrying the process of discharging plasma sintering, while the sintering temperature is 550Deg C.-700Deg C., the pressure is 30-1000MPa, the elevated temperature speed is 50-500Deg C. / min, the time of heat preservation is 0-10 min, the elevated temperature speed is 50-200Deg C. / min, Said invention can realize high magnetic property material with high degree of compactness, whose crystal grain is smaller than 100 nanometers, and it can be used in high temperature.
Owner:BEIJING UNIV OF TECH

Method for preparing amorphous/nanometer crystal multilayer-structure film

The invention discloses a method for preparing an amorphous/nanometer crystal multilayer-structure film. The amorphous/nanometer crystal multilayer-structure film is characterized in that the amorphous/nanometer crystal multilayer-structure film is composed of two entirely different crystal structures of a nanometer crystal structure and an amorphous structure, and has a multilayer structure composed of alternately overlapped amorphous layers and nanometer crystal layers. The amorphous/nanometer crystal multilayer-structure film prepared by the method has a compact film structure and clear interface layers. The method realizes control of a blending proportion of amorphous layers and nanometer crystal layers by control of thickness sizes (reaching to nanoscale) of different film layers thereby changing a blending proportion and even gradually changing a blending proportion, provides a novel research method for shear band deformation and size effects of a micro-amorphous alloy, provides a novel approach for improvement of mechanical properties such as ductility and toughness of an amorphous alloy thereby providing possibility for preparation of a mechanical property-controllable amorphous/nanometer crystal composite material, has simple processes and a low cost, and can be industrialized and popularized easily.
Owner:昆山昊盛泰纳米科技有限公司

Method for manufacturing zinc oxide-cellulose nanocrystalline composite fiber film with antibacterial characteristic and photocatalytic degradation characteristic at same time

The invention relates to a method for manufacturing a zinc oxide-cellulose nanocrystalline composite fiber film with the antibacterial characteristic and the photocatalytic degradation characteristic at the same time. The method includes the steps of enabling microcrystalline cellulose to be reacted for 5 hours to 10 hours under the 40 DEG C-95 DEG C mixed acid condition, adjusting the pH value to seven after the reaction is finished, and obtaining cellulose nanocrystalline powder; (2) preparing suspension liquid with the powder, mixing the suspension liquid with a zinc salt water solution, dropwise adding a sodium hydroxide solution at 30 DEG C to 95 DEG C, stirring to enable the mixture to be reacted for 5 min to 60 min after drop adding is finished, and carrying out washing and drying to obtain cellulose nanocrystalline-zinc oxide hybrid materials; (3) adding the materials and PHBV into organic solvents, raising the temperature to range 30 DEG C to 80 DEG C, and obtaining an electrostatic spinning solution; (4) carrying out electrostatic spinning on the electrostatic spinning solution, and obtaining the zinc oxide-cellulose nanocrystalline composite fiber film. According to the method, the preparing process is simple, and the obtained fiber film is a multifunctional full biodegradation product and has the antibacterial characteristic and the photocatalytic degradation characteristic.
Owner:ZHEJIANG SCI-TECH UNIV

Bipolar plate of fuel cell and method for preparing carbon titanium nanocomposite film on surface thereof

The invention discloses a bipolar plate of a fuel cell and a method for preparing a carbon titanium nanocomposite film on the surface thereof, belongs to the technical field of surface modification of metallic materials and fuel cells, and relates to a bipolar plate of a regenerative fuel cell and a proton exchange membrane fuel cell and a preparation technology of a surface modified film of the bipolar plate. The bipolar plate consists of a metal thin plate substrate and carbon titanium nanocomposite films which are formed on the surfaces at two sides of the substrate, wherein the metal thin plate substrate is a titanium plate and a stainless steel plate; the carbon titanium nanocomposite film is an amorphous and nanocrystalline composite film which is prepared on an amorphous carbon substrate with an arc ion film plating method and on which titanium and titanium carbide nanocrystals are distributed; the thickness of the film is of micron dimension; and the size of the crystal grains of the nanocrystals is of micron dimension. The invention has the effects and advantages that: the bipolar plate is low in manufacturing cost, has prominent composite performance such as corrosion resistance, conductivity, hydrophobicity and the like, can be used for replacing a noble metal bipolar plate and a graphite bipolar plate, and can be used as a cell bipolar plate of the proton exchange membrane fuel cell and an electrolytic cell bipolar plate of the regenerative fuel cell.
Owner:DALIAN UNIV OF TECH

Iron-based nanocrystalline composite coating for protecting boiler tail heating surface and laser-cladding forming process of iron-based nanocrystalline composite coating

The invention discloses an iron-based nanocrystalline composite coating for protecting a boiler tail heating surface and a laser-cladding forming process of the iron-based nanocrystalline composite coating. The iron-based nanocrystalline composite coating comprises the following components in percentage by weight: 49.9-62.8% of Fe, 14.2-20.4% of Cr, 9.0-16.3% of Mo, 2.9-4.1% of B, 0.6-1.3% of C, 1.0-2.4% of Mn, 3.4-8.0% of W, 1.0-1.9% of Si and 0-3.9% of RE, wherein RE is a rare earth element. The forming process comprises the following steps: preparing alloy powder of the iron-based nanocrystalline composite coating; treating the surface of the boiler tail heating surface; preparing the iron-based nanocrystalline composite coating through a simultaneous powder feeding method and a laser-cladding method, wherein the laser cladding is performed for multiple times. The formed iron-based nanocrystalline composite coating is 1 mm above in thickness. The iron-based nanocrystalline composite coating can obviously enhance the wear resistance and corrosion resistance of the boiler tail heating surface, and reduce maintenance costs of worn and corroded parts and consumption of raw materials of a power plant.
Owner:ELECTRIC POWER RES INST OF GUANGDONG POWER GRID +1

Preparation method of diamond composite coating of micro milling cutter

The invention discloses a preparation method of a diamond composite coating of a micro milling cutter, and relates to the micro milling cutter. The preparation method comprises the following steps of: placing a PCB (Printed Circuit Board) micro milling cutter into a tool and then placing into a deposition reaction chamber; evacuating the deposition reaction chamber, and introducing methane (CH4), hydrogen gas and oxygen gas into the deposition reaction chamber; applying direct-current electric arc to a heating wire which is installed in the deposition reaction chamber, wherein a deposition process in the deposition reaction chamber is divided into five stages including a heating stage, a nucleation stage, a submicrocrystal growth stage, a superfine nanocrystalline growth stage and a final growth stage, different gas-phase deposition conditions are adopted in the five stages, the submicrocrystal growth stage and the superfine nanocrystalline growth stage can be generated in a circulating manner to form a diamond submicrocrystal and superfine nanocrystalline composite coating, and the circulating generation number is N (N is not less than 1). The prepared diamond composite coating of the micro milling cutter can be used for keeping the cutting edge to be sharp for a longer time, obviously improving the machining effect, prolonging the service life of the cutter, reducing the cutter changing frequency, improving the machining efficiency and lowering the machining cost.
Owner:XIAMEN GOLDEN EGRET SPECIAL ALLOY

Samarium-cobalt-base nanocrystalline permanent magnet material and preparation method thereof

The invention relates to the metallurgy field and discloses novel samarium-cobalt-base nano-composite permanent magnetic material. The samarium cobalt base is (Sm, R)1(Co, Fe, Cu, Zr)7 in type and comprises a TbCu7 type structure, and Co is partially replaced by Fe, Cu and Zr; Re is any one of heavy rare earth Lu, Dy and Tb and partially replaces Sm. The preparation method includes steps that 1) mixing raw materials of the samarium cobalt base according to proportion, and smelting to obtain a 1: 7 type samarium cobalt base alloy ingot; 2) ball milling the alloy ingot through a high-energy ball milling technique, mixing with Fe powder according to proportion, and performing high-energy ball milling to obtain nanocrystalline composite magnetic powder; 3) carrying out annealing heat treatment on the nanocrystalline composite magnetic powder. According to the samarium-cobalt-base nanocrystalline permanent magnet material and the preparation method thereof, the soft/hard-magnetic phase composite magnetic powder is prepared through the high-energy ball milling, laser heat treatment and other techniques, a high magnetic energy product is obtained through exchange coupling between the nanocrystalline hard magnetic phase and nanocrystalline soft magnetic phase, and meanwhile, because rare-earth Fe phase is not used, the cost is lowered, and the operation technique is simplified.
Owner:嘉兴市鹏程磁钢有限公司 +1

Nanocomposite structure Mg2Si-based thermoelectric material and preparation method thereof

The invention relates to a nanocomposite structure Mg2Si-based thermoelectric material and a preparation method thereof, and belongs to the technical field of preparation of semiconductor thermoelectric materials. The preparation method comprises the following steps: taking Mg, Si and Sn elementary substance materials according to a stoichiometric ratio and performing high-frequency induction smelting to form cast ingot; crushing the smelted cast ingots, filling into a quartz glass tube with a lower open end, vertically placing into an induction smelting coil, vacuumizing a cavity of a rapid quenching furnace, filling protective gas, performing induction smelting to enable the block to reach a molten state, spraying the melt to a copper rod, throwing out to form belt materials, and collecting the belt materials; placing the belt materials into a glove box under the argon protective atmosphere, grinding into powder, and performing spark plasma sintering into blocks. The preparation method is simple and feasible; the process flow is short; oxidation of Mg can be effectively inhibited; process parameters are easy to control. An amorphous / nanocrystalline composite structure exists in a sample, the grain size is obviously refined, the grain size distribution is controllable, scattering of electrons and phonons is increased, the Seebeck coefficient is greatly increased, and the thermoelectric property of the material is improved.
Owner:BEIJING UNIV OF TECH

Rapid preparation of high performance nanostructured filling type skutterudite thermoelectric material

The invention relates to a preparing method of thermoelectric compound, in particular to a fast preparing method of filled type skutterudite thermoelectric material with high performance nanostructure. The invention is characterized in that the method comprises the following steps: 1) batching: granular Yb, granular Co and granular Sb are used as starting materials and weighed according to the chemical formula Yb0.3Co4Sb12.3; 2) preparing master alloy: the granular Yb, the granular Co and the granular Sb are mixed, then put into a melting furnace, heated slowly to 1100 DEG C by adopting rate of temperature increase of 2 DEG C/min and melted for 20 to 30h so as to obtain melt; the melt is quenched in supersaturated salt water so as to obtain the master alloy; 3) the master alloy is carried out cleaning processing, placed in an induction heating furnace to be melted to melt and then rotatablely throws the melt so as to obtain a strap product with an amorphous/nanocrystalline composite structure; and 4) the strap product with the amorphous/nanocrystalline composite structure is ground, tableted and then sintered by using discharging plasma so as to obtain filled type skutterudite thermoelectric material with high performance nanostructure. The method has short preparation period, low energy consumption, simple and easy-control technique, safety and no pollution.
Owner:WUHAN UNIV OF TECH

Nanocrystalline composite center-based stacked solar cell and preparation method thereof

The invention discloses a nanocrystalline composite center-based stacked solar cell and a preparation method thereof. Specifically, the preparation method comprises the following three steps: (1) preparation of a front sub-cell; (2) preparation of a composite center; and (3) preparation of a back sub-cell. With lead sulfide nanocrystal as a hole transport layer of the composite center, the stacked solar cell has the characteristic that a solvent method process is simple in operation and has the device stability that a traditional solvent method material is short of. A novel composite center and lead sulfide colloidal quantum dot solar cell system has the compatibility; the efficiency is much higher than that of a lead sulfide quantum dot lamination device reported at present; the temperature of the overall preparation process is controlled within 140 DEG C; the whole preparation process is carried out in air; the technology is simple; and an inert gas atmosphere is not needed. The preparation method disclosed by the invention breaks through existing technical bottlenecks, and provides a certain guidance function for further improvement of the photoelectric conversion efficiency of the device and promotion of commercialized development.
Owner:SUZHOU UNIV

Self-repaired waterborne polyurethane/cellulose nanocrystalline composite material and preparation method thereof

The invention provides a preparation method of a self-repaired waterborne polyurethane/cellulose nanocrystalline composite material. The preparation method comprises the following steps: preparing a waterborne polyurethane emulsion; mixing cellulose nanocrystalline powder or an aqueous dispersion with carboxylic acid containing maleinimide radicals in deionized water, carrying out vacuum-pumping water removal during a heating reaction to obtain maleinimide grafted cellulose nanocrystallines; mixing the waterborne polyurethane emulsion with the maleinimide grafted cellulose nanocrystallines, carrying out ultrasonic dispersion uniformly, and heating to obtain the self-repaired waterborne polyurethane/cellulose nanocrystalline composite material. Furan rings are introduced into a waterborne polyurethane macromolecular chain structure through a furan ring chain extender and/or an end-capping reagent, the maleinimide radicals are grafted to the surfaces of the cellulose nanocrystallines through an esterification reaction, the two components are uniformly mixed and heated to obtain the novel self-repaired waterborne polyurethane/cellulose nanocrystalline composite material, so that direct and uniform fastening recombination of the waterborne polyurethane and cellulose nanocrystallines is facilitated, and mechanical properties and self-repair performance of the material are improved.
Owner:芜湖万隆新材料有限公司

Cored wire of high-speed electric arc spraying nickel-base amorphous nanocrystalline antifriction coating

A cored wire of a high-speed electric arc spraying nickel-base amorphous nanocrystalline antifriction coating is characterized in that a core of the cored wire is wrapped by a pure-Ni cover, the mass percent of the core accounting for the wire ranges from 27% to 40%, the core consists of components including, in mass percent, from 3 to 5% of metal Cr, from 10 to 12% of B-Cr alloy, from 2 to 5% of Si-Fe alloy, from 10 to 15% of Mo and from 0 to 10% of BaF2 and CaF2 eutectic powder. In order to resolve the problem that a traditional high-speed electric arc spraying wear-resistant coating is poor in antioxidation and corrosion prevention, the cored wire is reasonable in ingredient design, the nickel-base amorphous nanocrystalline composite antifriction coating with the thickness of 0.5-1mm, low porosity and high bonding strength is prepared on a 20G low-carbon steel matrix by means of high-speed electric arc spraying, the hardness of the coating is larger than HV600, amorphous phase content is 20-50%, antioxidation and wear-resisting antifriction effects of the coating are remarkable, and the cored wire can be used for preparing antioxidative, anti-corrosion, wear-resistant and antifriction coatings with the work environment temperature within 750 DEG C.
Owner:ACADEMY OF ARMORED FORCES ENG PLA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products