Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

168 results about "YTTRIUM FLUORIDE" patented technology

Yttrium(III) fluoride is an inorganic chemical compound with the chemical formula YF3. It is not known naturally in 'pure' form. The fluoride minerals containing essential yttrium include tveitite-(Y) (Y,Na)6Ca6Ca6F42 and gagarinite-(Y) NaCaY(F,Cl)6. Sometimes mineral fluorite contains admixtures of yttrium.

Graphene and rare earth up-conversion fluorescent composite material and preparation method thereof

The invention provides a graphene and rare earth up-conversion fluorescent composite material and a preparation method thereof. The method comprises the steps of: using a graphite powder as a raw material to prepare graphite oxide by a Hummer method; conducting ultrasonic dispersion on 5-85mg of graphite oxide into 24-60mL of water; then adding Y (NO3), Yb (NO3) and Er (NO3) in a total molar weight of 0.05-1mmol by a stoichiometric ration of 78:20:2 into the graphite oxide dispersion; adding 0.02-0.5g of NaF and stirring for 5-10min; transferring the mixture to a 100mL reactor; reacting for 4-24h at 200-240 DEG C; naturally cooling to room temperature; centrifuging for separation and washing the reaction product with deionized water twice to obtain a graphene and yttrium fluoride up-conversion fluorescent powder composite material, which comprises a mixture of two or three selected from the followings: graphene-YF3:Yb, Er; graphene-(alpha) NaYF4:Yb, Er; and graphene-(beta) NaYF4:Yb, Er. The method provided by the invention is simple, employs non-toxic raw materials, and can change type of the earth up-conversion fluorescent material and up-conversion fluorescence properties of a final composite material by simply adjusting conditions of a hydrothermal reaction.
Owner:HARBIN ENG UNIV

Radiation refrigeration optical filter, method for preparing same and application of radiation refrigeration optical filter

The invention discloses a radiation refrigeration optical filter which comprises a substrate. A single surface of the substrate is polished, a metal reflecting layer is arranged on a rough surface ofthe substrate, and an intermediate layer and a top layer are sequentially arranged on the polished surface of the substrate; the intermediate layer comprises layers A and layers B which are alternately arranged; the thicknesses of each layer A and each layer B are 50-400 nm; the layers A are made of silicon dioxide or aluminum oxide, and the layers B are made of titanium dioxide or silicon nitrideor silicon carbide; alternatively, the layers A are made of titanium dioxide or aluminum oxide, and the layers B are made of silicon dioxide or silicon nitride or silicon carbide; the top layer is made of ytterbium fluoride or yttrium fluoride or zinc sulfide; multi-resonant absorption enhancers in wavebands of atmospheric transparent windows (with the wavebands of 8-13 micrometers) are jointly formed by the intermediate layer and the top layer. Compared with the traditional optical filters, the radiation refrigeration optical filter has the advantages that the radiation refrigeration opticalfilter can work in intense light for a long time, and radiation refrigeration can be passively implemented by the radiation refrigeration optical filter.
Owner:ZHEJIANG UNIV

Bistable Tm,Ho:YLE laser with bistable zone and adjustable width -

The invention provides an optical bistable Tm, Ho:YLF laser, the width of pumping bistable area of a laser diode end surface of which can be adjusted; the optical bistable Tm, Ho:YLF laser comprises a laser diode pumping source, an optical fiber, a coupling lens, a resonant cavity and a thulium and holmium codoping lithium yttrium fluoride crystal; the optical bistable Tm, Ho:YLF laser is characterized in that: pumping light given off by the two laser diode pumping sources enters in the resonant cavity by respectively passing through the optical fiber and the coupling lens; the resonant cavity is an L-shaped right-angle folding cavity which is composed of a back-cavity mirror, a 45 degrees plane folding mirror and an output mirror; the front end of the resonant cavity is the back-cavity mirror, the rear end thereof is the 45 degrees plane folding mirror, and the lower end thereof is the output mirror; the thulium and holmium codoping lithium yttrium fluoride crystal is arranged in the resonant cavity. The laser has small volume, simple structure and low cost; by injecting pumping light to an absorption area, the absorption performance of the absorption area is changed, thus achieving the purpose of adjusting the width of the bistable area and leading the laser to have large adjusting magnitude and convenient usage.
Owner:HARBIN ENG UNIV

Composite photocatalytic antibacterial material and preparation method thereof

The invention discloses a composite photocatalytic antibacterial material and a preparation method thereof; particularly, a ytterbium-erbium co-doped sodium yttrium fluoride (NaYF4:Yb,Er) and manganese-doped zinc oxide are combined to prepare the photocatalytic antibacterial material driven by visible/near-infrared light. The preparation method comprises the steps: together dissolving sodium chloride, yttrium acetate, ytterbium acetate, erbium acetate and ammonium fluoride in an ethylene glycol/water mixed solvent, and carrying out a microwave assisted solvothermal reaction to obtain NaYF4:Yb,Er spherical nanoparticles; dispersing the NaYF4:Yb,Er in an isopropanol/water/ammonia water mixed solvent, adding tetraethyl orthosilicate, and carrying out hydrolysis for 5 h, to obtain an NaYF4:Yb,Er@SiO2 core-shell structure; and carrying out ultrasonic dispersion of the NaYF4:Yb,Er@SiO2 in diethylene glycol, adding a zinc salt and a manganese salt, carrying out a heating reflux reaction at the temperature of 180 DEG C for 1-6 h, then washing, drying, and calcining for 2 h at the temperature of 500 DEG C to obtain the product. The material can convert the visible/near-infrared light into UV/visible light, manganese-doped zinc oxide absorbs the UV/visible light to produce electrons-holes, and the electrons-holes act on the environment to produce free radicals to participate in a sterilization process, and the material can be used in the field of photodynamic therapy.
Owner:ZHEJIANG NORMAL UNIVERSITY

Mg-Gd-Y-Zr magnesium alloy refining flux and producing method thereof

The invention provides an Mg-Gd-Y-Zr magnesium alloy refining flux and a production method thereof. The chemical components of the flux are mixed according to the following mass percentages: potassium chloride of ranging from 30 to 50 percent, barium chloride of ranging from 5 to 20 percent, sodium chloride of ranging from 2 to 10 percent, calcium chloride of ranging from 10 to 20 percent, calcium fluoride of ranging from 2 to 8 percent, cryolite of ranging from 1 to 5 percent, gadolinium compound of ranging from 3 to 8 percent, yttrium compound of ranging from 3 to 8 percent, and zirconium compound of ranging from 2 to 8 percent, wherein, the gadolinium compound is gadolinium chloride, gadolinium carbonate or gadolinium fluoride, the yttrium compound is yttrium chloride, yttrium carbonate or yttrium fluoride, the zirconium compound is zirconium tetrachloride or potassium zirconium fluoride. The flux has good melting point, viscosity, wettability and the slag removing performance which is improved greatly. Because the flux does not contain magnesium chloride or react with the lanthanon such as gadolinium and yttrium, the chemical reaction loss of the lanthanon in the refining process is not caused, thereby being particularly suitable for the refining purifying process of the Mg-Gd-Y-Zr magnesium alloy and improving the refining effect of the magnesium fused mass.
Owner:SHANGHAI JIAO TONG UNIV

Method for preparing rare earth magnesium alloy and yttrium-neodymium magnesium alloy

The invention relates to a method for preparing yttrium-neodymium magnesium alloy and the yttrium-neodymium magnesium alloy. A graphite block is adopted as an anode, a molybdenum rod serves as an inertia cathode, a molybdenum crucible serves as an alloy receiver, mixtures of yttrium oxide, neodymium oxide and magnesium oxide are added into a fluoride molten salt electrolyte system composed of yttrium fluoride, neodymium fluoride and lithium fluoride, then direct currents are guided for electrolysis and finally the yttrium-neodymium magnesium alloy is obtained; the mass ratio of the yttrium fluoride to the neodymium fluoride to the lithium fluoride in the fluoride molten salt electrolyte system is 5-20 to 70-90 to 5-10, the mass percent ratio of the neodymium oxide and the yttrium oxide to the magnesium oxide is 99-80 to 1-20, the mass percent ratio of the neodymium oxide to the yttrium oxide is 99-1 to 1-99, and the electrolysis temperature ranges from 1050 DEG C to 1150 DEG C. The method has the advantages that the technological process is simple, the cost is low, the product ingredients are stable, just carbon dioxide and little carbon monoxide are generated in the technological process, environmental pollution is small, and the process is friendly to environment and is suitable for large-scale production.
Owner:BAOTOU RES INST OF RARE EARTHS

Method for growing large-sized rare-earth-doped barium yttrium fluoride single crystals

The invention provides a method for growing large-sized rare-earth-doped barium yttrium fluoride single crystals. The method comprises the following steps: in a heating furnace, putting polycrystals of {xReF3+(1-x)YF3} and BaF2 into a crucible according to a mass ratio, vacuumizing, and introducing argon gas into the heating furnace successively, wherein the mass ratio of {xReF3+(1-x)YF3} to BaF2 is 2 to 1 and x is 0-100%; controlling the heating power by a temperature control instrument to melt the polycrystals, performing heat exchange by flowing of a liquid surface in the crucible and the gas in the furnace to form an axial temperature difference, and forming a radial temperature difference of temperature on a wall of the crucible and temperature in the center of the crucible to cause natural convection of a melt; fixing BaY2F8 seed crystals to a seed crystal rod by a platinum chuck, and lowering the seed crystals to be contacted with the melt for fluoride crystal growth; when fluoride crystals grow to have set sizes, annealing, cooling to the room temperature at a speed of 20 DEG C / hour, adjusting the rotary speed and the heating power, separating the crystals from the melt until the crystal growth is ended, and annealing in the crucible to obtain the large-sized fluoride crystals. The method solves the problems of negative growth factors of difficulty for crystal growth, a large amount of air bubbles in the crystals and the like caused by poor flowability of the fluoride melt.
Owner:SOUTH WEST INST OF TECHN PHYSICS

Method for preparing rare-earth doped potassium yttrium fluoride up-conversion luminescence nano material

The invention relates to a method for preparing a rare-earth doped potassium yttrium fluoride up-conversion luminescence nano material. The method comprises the following steps: 1) weighing yttrium oxide, sylvite and a fluorine source, adding in an oleic acid/oleylamine-containing solvent system, stirring and mixing, thus obtaining a first uniform solution; 2) weighing ytterbium fluoride and a rare-earth activator, adding in the oleic acid/oleylamine-containing solvent system, stirring and mixing, thus obtaining a second uniform solution; 3) rapidly heating the first uniform solution to a high temperature, and meanwhile rapidly filling the second uniform solution, and sufficiently stirring to react, thus obtaining a third uniform solution; and 4) cooling the obtained solution to room temperature, performing centrifugal separation, washing, and drying, thus obtaining the rare-earth doped potassium yttrium fluoride up-conversion luminescence nano material. The method has the beneficial effects that the preparation period of the material is effectively shortened, new ideas and ways are provided for preparing the up-conversion luminescence nano material, large-scale popularization and application are facilitated, and the purposes of controllable the monodisperse particle size, high quantum yield and the like are solved.
Owner:WUHAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products