Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

154results about How to "Realize large-scale preparation" patented technology

Large-scale preparation method of transparent super-hydrophobic/super-amphiphobic coating

InactiveCN106800885AExcellent superhydrophobic/superamphiphobic propertiesHigh transparencySpecial surfacesCoatingsNanoparticle ComplexAlcohol
The invention discloses a large-scale preparation method of a transparent super-hydrophobic / super-amphiphobic coating. The method comprises the steps of ultrasonically dispersing nano particles into an alcohol-water mixed system and carrying out hydrolysis and condensation reaction on the nano particles and fluoride-free or fluorine-containing organosilane under the acid or alkali catalysis action to prepare a transparent suspension liquid of a fluoride-free or fluorine-containing organosilane polymer-nano particle compound; and applying the transparent suspension liquid of the compound on the surface of a substrate material through spraying or dip-coating to obtain the transparent super-hydrophobic / super-amphiphobic coating with good performance. Preparation of the transparent super-hydrophobic / super-amphiphobic coating of 10-100m<2> can be completed within an hour; large-scale preparation of the large-area transparent super-hydrophobic / super-amphiphobic coating is achieved for the first time; the preparation method is low in cost and simple in process; and the prepared coating has excellent super-hydrophobic or super-amphiphobic property, relatively good mechanical stability, chemical stability and environment stability, and has a wide application prospect.
Owner:LANZHOU INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Preparation method of black phosphorus alkene-graphene composite material hollow microsphere

The invention discloses a preparation method of a black phosphorus alkene-graphene composite material hollow microsphere. The preparation method comprises the steps of adding a black phosphorus alkene nanosheet or black phosphorus alkene quantum dot dispersion liquid into oxidized graphene nanosheet dispersion liquid firstly, and mixing the black phosphorus alkene and the oxidized graphene by adopting a mechanical agitation method; spraying the mixed dispersion liquid of the black phosphorus and the oxidized graphene into liquid helium by a spraying method and rapidly freezing the mixed dispersion liquid into microballoons; then putting the obtained black phosphorus alkene and oxidized graphene composite material microballoons into a freezer dryer for freeze-drying, so as to obtain the black phosphorus alkene and oxidized graphene composite material hollow microballoons; reducing the oxidized graphene into graphene at high temperature under the protection of nitrogen or argon, so as to obtain the balck phosphorus alkene and graphene composite material hollow miroballoons at last. The prepared black phosphorus alkene and graphene composite material hollow miroballoons have a potential application prospect in the fields such as lithium ion batteries, supercapacitors, sensors and filtration purification.
Owner:SOUTHEAST UNIV

Large-scale preparation method for stably-doped large-area graphene transparent conductive films

The invention relates to a preparation technology for graphene transparent conductive films, in particular to a large-scale preparation method for stably-doped large-area graphene transparent conductive films. According to the method, the doping effect and stability of the graphene transparent conductive films are improved through a sandwich structure, and a doping agent is in direct contact with the intrinsic surface of graphene and positioned between the graphene and a transparent substrate. The method comprises the following steps: firstly, forming the doping agent on the surface of the graphene or the transparent substrate on an initial substrate; secondly, combining the graphene, the doping agent and the transparent substrate; finally, separating the graphene from the initial substrate so as to prepare the stably-doped large-area graphene transparent conductive films. The graphene serves as an outer-layer protection film of the doping agent, so that the doping stability can be improved; the intrinsic surface of the graphene is in direct contact with the doping agent, so that the pollution of an interface between the graphene and the doping agent by impurities can be avoided, the doping effect of the doping agent can be improved, and the conductivity of the film can be enhanced; the transferring and doping processes of the graphene are combined, so that the large-scale preparation can be easily realized.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI +1

All-solid-state battery with low interface resistance and preparation method of all-solid-state battery

The invention discloses an all-solid-state battery with low interface resistance and a preparation method of the all-solid-state battery, the all-solid-state battery comprises an integrated battery cell, and the integrated battery cell comprises a positive electrode current collector layer, a positive electrode layer, a buffer layer, an organic-inorganic composite electrolyte membrane, a negativeelectrode layer and a negative electrode current collector layer which are arranged in sequence; the organic-inorganic composite electrolyte membrane comprises a high-molecular polymer matrix, a lithium salt and an inorganic filler, the high-molecular polymer matrix is selected from polyvinylidene fluoride or a polyvinylidene fluoride-hexafluoropropylene copolymer; the lithium salt is selected from at least one of LiTFSI, LiFSI, LiClO4, LiPF6, LiBF4, LiBOB, LiDFOB and LiPF2O2. According to the invention, a layer of soft contact is formed between hard interfaces of the positive electrode and the negative electrode, multiple layers of films are integrally formed, different component film structures are seamlessly interconnected, and the interface problem of the solid-state battery is effectively improved. The solid-state battery provided by the invention has excellent capacity exertion and cycling stability, and the preparation method is high in efficiency and low in cost.
Owner:SHANGHAI INST OF SPACE POWER SOURCES

Method for preparing Fe3+doped TiO2 hollow sphere catalyst and application thereof

The invention discloses a method for preparing a novel Fe3+-doped TiO2 opened-port or closed-port hollow sphere composite catalyst, which comprises the following steps of: preparing a Fe3+-doped carbon/titanium dioxide nuclear shell particle by using a template method-hydrolysis cladding method and calcining for 2-4h at certain temperature to obtain the Fe3+-doped TiO2 opened-port or closed-port hollow sphere composite catalyst. The method can be applied to solar visible light catalytic degradation cation blue dye solution. In the invention, the Fe3+-doped TiO2 composite hollow sphere is prepared from ferric sources, titanium sources and carbon spheres with low cost, thereby the invention has the advantages of no pollution caused by used raw materials, simple process of method, no pollutant emission in the preparation process, short preparation period, less energy consumption and low cost, and can realize scale preparation, and the invention belongs to the green synthesis technology. A light absorption side of the composite light catalyst carries out red shift to a visible light region after the doping of Fe3+, so that the utilization ratio of the solar visible light is improved and the degradation efficiency under the visible light is greatly improved.
Owner:JIANGSU UNIV

Graphene flame-retardant elastic composite, composite film and preparing method of composite film

The invention provides a graphene flame-retardant elastic composite. The composite is characterized by being prepared from, by mass, 0.5-10% of graphene microchips, 20-35% of fire retardant, 10-30% ofthermoplastic elastomer, 30-60% of solvent and 0.1-1.5% of auxiliaries. In addition, the invention further provides a composite film containing the graphene flame-retardant elastic composite and a preparing method of the composite film. The composite obtained with the thermoplastic elastomer, the fire retardant and the solvent with different elasticity moduli as the film forming materials and thegraphene microchips as the conductive filler has the advantages of flame retardance, high conductivity, bendability, high adhesiveness and the like, and therefore the composite film prepared from thecomposite also has the advantages of flame retardance, high conductivity, bendability, high adhesiveness and the like, and the composite film can be applied in the fields of electromagnetic shielding, far infrared electric heating products, flexible conductive electrodes and the like, is wide in application range, and effectively overcome the problems that an existing electric heating film product is poor in bending resistance and potential safety hazards such as spontaneous combustion are caused by local overheating.
Owner:中金态和(武汉)石墨烯科技股份有限公司

Preparation method of Fe and N-doped porous carbon nanofiber applicable to cathode catalyst for polymer fuel cell

The invention discloses a preparation method of a Fe and N-doped porous carbon nanofiber applicable to a cathode catalyst for a polymer fuel cell. The preparation method comprises the following concrete steps: mixing a carbon nanofiber with pyrrole in proportion, adding a certain amount of a ferric iron ion solution, polymerizing the pyrrole, uniformly coating the surface of the carbon nanofiber with the polymerized pyrrole, removing unreacted impurities, performing suction filtration, naturally drying, soaking the carbon nanofiber coated with the polymerized pyrrole in the iron ion solution, absorbing ferric iron ions until the saturation rate is reached, then, performing suction filtration and drying, and performing high-temperature treatment, acid reflux and high-temperature treatment to obtain an efficient Fe and N-doped porous carbon nanofiber electrocatalyst. The Fe and N-doped porous carbon nanofiber is prepared from the carbon nanofiber, pyrrole and iron ions as precursors; raw materials are low in price and easily available; the Fe and N-doped porous carbon nanofiber can be easily produced on a large scale and can replace an expensive Pt-based material to serve as the stable and efficient catalyst for oxygen reduction reaction of the fuel cell.
Owner:UNIV OF SCI & TECH OF CHINA

Method for preparing carbon quantum dot/flower-shaped indium and calcium sulfide composite photocatalysts and application thereof

The invention discloses a method for preparing novel carbon quantum dot/flower-shaped indium and calcium sulfide (CQDs/CaIn2S4) composite photocatalysts, and belongs to the field of environmental protection. The method includes preparing the CQDs/CaIn2S4 composite photocatalysts by the aid of in-situ hydrothermal processes at certain temperatures. The CQDs/CaIn2S4 composite photocatalysts prepared by the aid of the method can be applied to catalytically degrading tetracycline hydrochloride solution under the sunlight or visible light. The method has the advantages that the method includes simple technologies, is free of pollutant discharge in preparation procedures and is short in preparation period and low in energy consumption and cost, is a green synthesis technique, and the carbon quantum dot/flower-shaped indium and calcium sulfide composite photocatalysts can be prepared on a large scale; the visible light response and the adsorption capacity of the carbon quantum dot/flower-shaped indium and calcium sulfide composite photocatalysts can be improved after CQDs (carbon quantum dots) are compounded, the service lives of electrons-holes can be prolonged, photoelectron transmission can be promoted, and the visible light photocatalytic activity of the carbon quantum dot/flower-shaped indium and calcium sulfide composite photocatalysts can be greatly improved.
Owner:JIANGSU UNIV

Method for preparing graphene through full liquid water phase physical stripping

The invention discloses a method for preparing graphene through full liquid water phase physical stripping. The method comprises the following steps that (1) expanded graphite is soaked with water, and wetting soaking treatment is conducted; (2) the wetted and soaked expanded graphite is ground, and expanded graphite soaking liquid is obtained; (3) the expanded graphite soaking liquid is subjectedto high pressure homogeneity treatment, emulsification treatment and ultrahigh pressure critical treatment sequentially; and (4) standing is conducted till the liquid is layered, then spray drying isconducted, and graphene is obtained. The method adopts full liquid physical stripping, the solvent used in the method is water, so that the production process is energy-saving and environment-friendly; the raw materials used in the method are easy to get, no pollutants is generated in the preparation process, so that the preparation process is green and environmentally friendly, and cannot causeany pollution to the environment; the prepared graphene is intact in structure, contains a small amount of hydrophilic groups such as -OH, and has the good dispersing property; and graphene with different numbers of layers and specifications can be screened and prepared according to the requirement in different needed fields, so that graphene can be applied to different fields.
Owner:明德润和新材料(珠海)有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products