Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1379 results about "Ferroalloy" patented technology

Ferroalloy refers to various alloys of iron with a high proportion of one or more other elements such as manganese (Mn), aluminium (Al), or silicon (Si). They are used in the production of steels and alloys. The alloys impart distinctive qualities to steel and cast iron or serve important functions during production and are, therefore, closely associated with the iron and steel industry, the leading consumer of ferroalloys. The leading ferroalloy-producing countries in 2008 were Ukraine, China, South Africa and Russia, which accounted for 77% of the world production. World production of bulk chromium, manganese and silicon ferroalloys was estimated as 29.1 million tonnes (Mt) in 2008, a 3% decrease compared with 2007.

Rare earth aluminum alloy, and method and device for preparing same

The invention discloses a rare earth aluminum alloy, and a method and a device for preparing the same. The alloy contains at least one rare earth metal of lanthanum, cerium, praseodymium, neodymium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, lutetium, scandium and yttrium, the content of raw earth is 5 to 98 weight percent, and the balance is aluminum and inevitable impurities. The device for preparing the rare earth aluminum alloy is characterized in that: a) graphite serves as an electrolysis bath, a graphite plate is an anode, a tungsten bar is a cathode and a molybdenum crucible serves as a rare earth aluminum alloy receiver; b) the diameter of the tungsten bar is 30 to 55 mm; and c) the anode of the graphite consists of a plurality of graphite plates. The rare earth aluminum alloy, and the method and the device for preparing the same have the advantages that: the alloy has uniform components, little segregation and low impurity content; technology for preparing the rare earth aluminum alloy through fusion electrolysis can maximally replace a process for preparing single medium-heavy metal through metallothermic reduction, greatly reduce energy consumption and the emission of fluorine-containing tail gas and solid waste residue, improve current efficiency and metal yield and reduce the consumption of auxiliary materials and the energy consumption; and the rare earth aluminum alloys with different rare earth contents can be obtained by controlling different electrolytic temperatures and different cathode current densities.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Powder metallurgy rare earth copper coated ferroalloy oil-retaining bearing and manufacturing method thereof

The invention discloses a powder metallurgy rare-earth copper-clad iron alloy oil-impregnated bearing and a manufacturing method thereof. Accounted by percentage, the bearing consists of the following compositions by percentage: 18 to 22 percent of Cu, 0.2 to 1.0 percent of graphite, 0.3 to 0.8 percent of La or Ce and the residual quantity of Fe and unavoidable impurities. The bearing is made by the procedures of mixing, low temperature diffusion treatment, pressing, sintering and the like of a mixture formed by copper-clad iron powder, powder of the element La or Ce and the residual quantity of Fe and unavoidable impurities according to certain mixture ratios. The bearing uses the iron powder for substituting most of the copper powder to reduce the manufacturing cost; lead is not contained in the bearing, which meets the requirement of environmental protection; the rare earth is adopted as a catalyst for causing the copper-clad iron powder to be easily combined with other powder, and the alloy is uniformly distributed, which is beneficial for the refinement of alloy grains and leads thin through holes to be formed in the sintering body with hole connection efficiency being more than 95 percent. The mechanical property of the bearing is better than technical standards of oil-impregnated bearings sintered by copper-clad iron powder and 6-6-3 bronze powder.
Owner:JIANGSU YINGQIU GRP CO LTD

Production technology of preparing manganeisen from low grade manganese mine

A production technology of preparing manganeisen from low grade manganese mine. Low grade manganese mine with a metal manganese content of 15-30% is dried, added with reducing agent, catalyst, solvent and bonding agent and mixed well to prepare a composite material; the low grade manganese mine composite raw material is placed in a rotary kiln or a tunnel kiln, heated to 400+/-80 DEG C by energy of gas or natural gas with an air excess coefficient controlled at 0.9-1.0, with a heating speed of 1-4 DEG C / min at a normal temperature, wherein the furnace is kept in a weak reducing atmosphere, and insulated for 0.5-5 h; then the low grade manganese mine composite raw material is heated to 750+/-80 DEG C with a heating speed of 2-5 DEG C / min and insulated for 0.5-5h; finally the low grade manganese mine composite raw material is heated to 1100+/-150 DEG C and insulated for 0.5-6h; gas pressure in the furnace is kept at 0.12-0.15 MPa during heating and insulation; after the reaction, the material is cooled and treated with magnetic separation to obtain the manganeisen and tailings. The manganeisen comprises 15-20% of metal Fe, 65-75% of metal Mn, less than 5% of gangue, 1.0-6.5% of carbon, less than 0.15% of phosphor and less than 0.15% of sulfur, can be used as a raw material for smelting of high-quality manganeisen by a converter or an electric furnace and has low cost and wide application prospect.
Owner:CENT SOUTH UNIV

Smelting method of axle steel for high-speed motor car

The invention relates to a smelting method of axle steel for a high-speed motor car, which comprises the following steps of: I. smelting in an electric furnace, firstly adding steel scraps into the electric furnace and adding pretreated molten iron, wherein the weight proportion of the pretreated molten iron is 80% to 95%, and in the steel scraps, P is less than or equal to 0.015% and S is less than or equal to 0.010%; blowing oxygen and adding lime, and tapping from the electric furnace after P is less than or equal to 0.008%; adding slagging materials, iron alloys and metals into steel ladles according to the types of steel; II. adopting slag systems with high alkalinity and high Al2O3 content for ladle furnace refining, controlling the alkalinity R of molten slag, wherein R is equal to 4.0 to 6.0; the molten steel comprises following components in percent by weight: 0.26 to 0.31% of C, 0.20 to 0.35% of Si, 0.55 to 0.70% of Mn, less than or equal to 0.005% of S, less than or equal to 0.015% of P, 0.75 to 0.90% of Cr, 2.90 to 3.30% of Ni, 0.45 to 0.55% of Mo and 0.08 to 0.13% of V; and III. feeding Si and Ca into the molten steel and blowing argon from the bottom after carrying out VD (Vacuum Distillation) and the vacuum refining. Inclusions of the steel rolled axle smelted by the smelting method of axle steel for the high-speed motor car meet the using requirements on the high-speed axle.
Owner:SHANXI TAIGANG STAINLESS STEEL CO LTD

Acidic coating super two-phase stainless steel electrode

The invention relates to an acidic coating super duplex stainless steel welding rod and belongs to welding material technology. The invention adopts 2507 duplex stainless steel wires as the welding core; the components and the weight percentages of the components of the welding rod coating are as follows: 30-40 of rutile, 3-7 of titanium dioxide, 15-20 of potash feldspar, 1-3 of phlogopite, 5-10 of marble, 16-20 of metal powder, 0.5-1.5 of rare earth fluoride, 2-3 of cryolite, 5-8 of chrome green, 0.5-1.0 of soda, and 1.5-3.5 of ferroalloy. The welding rod of the invention has the advantages, showed by the test results of manufacturability, metallographic observation, mechanical property and corrosion resistance, that the welding rod has extremely good welding technical property; electric arc is stable during welding, and spattering does not basically exist; the formation of weld joints is good; slag detachability is good; the manipulability of the welding rod is excellent; through metallographic observation, the content of ferrite in the structure of welding joints ranges from 40 percent to 60 percent, and the phase ratio can meet engineering application requirement; the welded welding joint has excellent mechanical property, and tensile strength can be more than 800 MPa; low temperature toughness is good; the stress corrosion resistance and pitting corrosion resistance of the welding joint are excellent.
Owner:LUOYANG SHUANGRUI SPECIAL ALLOY MATERIALS

Aluminum-calcium-magnesium-cerium composite alloy used for strong desulfurization, final desoxidation, and quenching and tempering of liquid steel

InactiveCN101705334AStrong deep desulfurization abilityWith deep desulfurization abilitySteelmakingAlkaline earth metal
The invention provides an aluminum-calcium-magnesium-cerium composite alloy used for strong desulfurization, final desoxidation, and microalloying quenching and tempering of liquid steel, belonging to the technical field of ferroalloy used for steelmaking. Based on aluminum deoxidization, the aluminum-calcium-magnesium-cerium composite alloy is added with alkaline-earth metal calcium and magnesium to conduct the strong desulphurization and the final desoxidation on the liquid steel so as to reduce inclusions in steel, and adopts rare earth-cerium and alloy elements such as titanium, niobium, vanadium and the like to conduct quenching and tempering, and microalloying on the liquid steel so as to change the morphology of the inclusions, lead the steel to be solidified, crystallized and refined, and optimize the steel performance. The aluminum-calcium-magnesium-cerium composite alloy contains the following chemical compositions (mass percent): 10-60% of aluminum, 10-30% of calcium, 10-30% of magnesium, 0.5-10% of cerium, less than or equal to 1% of impurities (carbon + silicon + phosphorus + sulphur), and the balance of ferrum; and for the purpose of achieving different microalloying, the composite alloy also can contain one or more microalloying elements of titanium, niobium, molybdenum, vanadium, tungsten and boron, and the weight percentage content of the microalloying elements is 0.1-10%. In the invention, the final desoxidation, the strong desulfurization, the microalloying and the quenching and tempering of the liquid steel is completed in one step, thus improving the refining efficiency and effect, and greatly improving the steel quality.
Owner:JIANGSU UNIV

Process and device for preparing chromium iron by using chromium ore powder

The invention relates to a process and a device for preparing chromium iron by using chromium ore powder, which belongs to metallurgical industry steel-making raw material. The process comprises the following steps: mixing chromium iron containing raw materials with reducing agent, solvent and catalyst to prepare ultra fine powder, mixing to make pelletizing materials, sending the pelletizing materials into a reducing furnace, drying and roasting, and obtaining chromium irons after the reduction reaction. The reducing device is connected with an upper furnace above a furnace base, a lower furnace body is connected to the downside of the furnace base, the upper end of the upper furnace body is connected with an upper furnace mantle, a drying bed grate is positioned at the upper end in the upper furnace body, a purifying device is connected with the upper furnace body and the lower furnace body through pipelines, and a residual heat circulating device is connected with the lower furnace body. The invention has the advantages that: firstly, the reduction temperature is low, the reduction speed is high, the energy consumption is reduced, the production cost is lowered, the production efficiency is high, and the uniformity of the quality is ensured; secondly, the device is simple with less investment, the degree of mechanization is high, the procedure is simple, the yield is large, the mass production can be performed; thirdly, the waste of raw materials is reduced, the environment pollution is lowered; fourthly, the cost is low because the chromium ore powder and chromium-containing waste are adopted as raw materials; and fifthly, the waste resource can be recycled so as to save the resource consumption.
Owner:丁家伟

Production method for vanadium nitride ferroalloy

The invention relates to a production method for a vanadium nitride ferroalloy and belongs to the technical field of chemical metallurgy. The technical scheme provided by the invention is that the production method comprises the following steps of: 1-, performing crushing and fine grinding on a raw material after entering a ball mill; 2-, putting the powdery material after being finely ground in a reaction vessel coated with an anti-sticking agent, and then, delivering the reaction vessel filled with the powdery material into a preparation furnace; 3-, introducing reaction gas into the furnace; heating the preparation furnace, and performing a nitriding reaction and a sintering reaction on the powdery material in the preparation furnace; and 4-, discharging under the nitrogen protection for cooling to obtain the vanadium nitride ferroalloy. According to the production method for the vanadium nitride ferroalloy, a pre-reduction reaction, a carbonization reaction and the nitriding reaction are performed on the raw material in the preparation furnace in the manner of powder, and the three reactions are realized in the same equipment furnace, thereby, the production efficiency is high. Briquetting is not needed, and thus, the speed of the nitriding reaction is accelerated; the required reaction temperature is low; the energy consumption is low; and the equipment operating rate and the labor productivity are high. The production method for the vanadium nitride ferroalloy is more suitable for large-scale industrial production. Vacuum equipment is not needed; the raw material completely reacts in the manner of powder; the product quality is stable; and the vanadium yield is high.
Owner:HEBEI IRON AND STEEL

Production process for smelting vanadium ferro-alloy by electro-aluminothermic process

The invention belongs to the technical field of iron alloy smelting, and in particular relates to a production process for smelting vanadium ferro-alloy by an electro-aluminothermic process. The important improvement is to provide a low-cost and easily controlled slag modification step in which a furnace liner is not corroded. The production process comprises the following steps of: A, mixing materials; B, performing reductive smelting; C, modifying slag; and D, casting and crushing for forming according to a conventional method. The improvement is that: iron oxide is added into the step C for modifying the slag, and the adding amount of the iron oxide is 15 to 20 percent of the weight of aluminum; and after the iron oxide is smelted, when the vanadium ferro-alloy is smelted to the furnace temperature of between 1,600 and 1,900DEG C and the aluminum in the vanadium ferro-alloy melt is less than 0.5 percent, the vanadium ferro-alloy melt and the slag are discharged together from the furnace. The added iron oxide facilitates removal of residual aluminum, and the aluminum in the alloy is reduced to be 0.2-0.5 percent; meanwhile, the slag property can be adjusted, the smelting point of the furnace slag is reduced, the smelting is smoothly performed and the metals in the slag are settled to the alloy melt; moreover, the yield of vanadium is 97 to 99 percent, so that the vanadium ferro-alloy smelting cost is reduced, the product quality is improved, and the enterprise benefit and resource utilization rate are improved.
Owner:PANGANG GROUP VANADIUM TITANIUM & RESOURCES +3

Method for smelting chromium-nickel-iron alloy from stainless steel dust-removing ash

The invention is a stainless steel ash removing method for smelting inconel. The method comprises the steps as follow; 1 make ash removing block, comprising the following three steps; 1) selective mixing; 2) extrusion molding; 3) natural drying; 2 make the master liquid by melting the normal recycled waste steel or stainless slag steel, pre-treated the molten iron, the ash removing block and the chromate nickel sponge iron inside the electric furnace; 3 batch-by- batch restoring, which comprises the following three steps: 1) add the block and the extra coke or coke breeze to smelt after the raw material used as master liquid is fully melted; 2) supply power with 15 to 20 minutes, then stop for conducting the operations of temperature measuring, exampling and analyzing, and add ferrosilicon breeze and lime; 3) the molten iron is remained between 1550 to 1600 DEG C in the smelting process; 4 finally restoring, and the main components of the metal solution after being finally restored are as follow: C percent is more than or equal to 2.50, Si percent is more than or equal to 0.20, P percent is less than or equal to 0.045, Cr percent is more than or equal to 5.0, and Ni percent is more than or equal to 1.5. The invention has the advantages of reducing environment pollution and increasing the metal yield of the ash removing.
Owner:SHANXI TAIGANG STAINLESS STEEL CO LTD

High vanadium ferroalloy smelting method and ingot mould for smelting high vanadium ferroalloy

ActiveCN103757171AReduce coolingOvercoming difficult follow-up problemsProcess efficiency improvementReduction treatmentElectric arc furnace
The invention discloses a high vanadium ferroalloy smelting method. The method comprises the steps of adding cold-state vanadium-rich slag and limestone to the bottom of an electric arc furnace, adding a phase-I mixture consisting of vanadium pentoxide, aluminum particles, limestone and steel cuttings and smelting; returning heat-state vanadium-enriched slag of last batch into the electric arc furnace and discharging slag when vanadium content in smelting slag is less than 0.5%; adding a phase-II mixture consisting of vanadium trioxide, aluminum particles, limestone and steel cuttings, smelting, discharging slag when vanadium content in smelting slag is less than 0.5%, and before discharging the slag, adding aluminum or aluminum-magnesium alloy for reduction treatment; adding a refining mixture consisting of vanadium pentoxide and limestone or iron scale and limestone, smelting, controlling temperature of vanadium-iron alloy liquid in the furnace to be above 1900 DEG C, discharging the vanadium-iron alloy liquid and the vanadium-enriched slag when vanadium content is 78-82% and aluminum content is less than 1.5% in the vanadium-iron alloy liquid, pouring the vanadium-iron alloy liquid into an ingot mould which is preheated to be above 500 DEG C, and cooling, demoulding and breaking to obtain high vanadium ferroalloy which contains more than 80% of vanadium.
Owner:攀钢集团西昌钒制品科技有限公司

Method for analyzing ferrosilicon alloy components for X-ray fluorescence spectrum analysis

The invention discloses a method for analyzing ferrosilicon alloy components for X-ray fluorescence spectrum analysis. A method for preparing a sample comprises the following steps of: selecting a proper oxidant; adding a flux into a platinum crucible, putting the platinum crucible in a high temperature furnace, and melting the flux at high temperature to manufacture a wall built-up flux crucible with the basement of flux; mixing a ferrosilicon alloy test sample, the flux and the oxidant, pouring the mixture into the flux crucible, and covering a certain amount of mixed flux; and putting the flux crucible filled with the ferrosilicon alloy test sample, the flux, the oxidant and the mixed flux into the high temperature furnace, preliminarily oxidizing at low temperature, shifting into a high temperature zone, and melting at high temperature to prepare the ferrosilicon alloy test sample glass sample for the X-ray fluorescence spectrum analysis. In the technical scheme, elements are uniformly distributed in the prepared glass sample, and the glass sample has no particle effect and can be preserved for a long time; moreover, the operation method is simple and safe, the preparation time of the sample is short, and primary and secondary quantity elements in the ferrosilicon alloy are rapidly and accurately measured.
Owner:MAANSHAN IRON & STEEL CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products