Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

180 results about "Copper(I) iodide" patented technology

Copper(I) iodide is the inorganic compound with the formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding. Pure copper(I) iodide is white, but samples are often tan or even, when found in nature as rare mineral marshite, reddish brown, but such color is due to the presence of impurities. It is common for samples of iodide-containing compounds to become discolored due to the facile aerobic oxidation of the iodide anion to molecular iodine.

Preparation method of amide

The invention discloses a preparation method of amide. With an aldehyde derivative and a formamide derivative as a reaction substrate, iodide as catalyst and tert-butanol hydrogen peroxide as an oxidizing agent, the amide is prepared through decarbonylation double free radical cross-coupling reaction, wherein the chemical structural formula of the aldehyde derivative is shown in the description, R1 is selected from a naphthyl, a heterlcyclic ring, an alkylene or a mono-substituted aryl; and the iodide is one selected from sodium iodide, potassium iodide, cuprous iodide, lithium iodate, an iodine elementary substance, tetrabutyl ammonium iodide, tetraheptylammonium iodide, tetramethylammonium iodide and benzyltrimethylammonium iodide. According to the invention, because the amide is prepared by using the iodide as the catalyst and using the double free radical cross-coupling method, the use of the traditional metal catalyst with expensive price and larger toxicity as well as a complicated experiment method is avoided so that the reaction is simpler, more convenient, easier, safer, greener and more economic; moreover, the preparation method of the amide disclosed by the invention has the advantages of quite moderate reaction condition, simpler post-treatment and potential industrial application value.
Owner:铜陵市官作文化有限公司

Di-nuclear cuprous complex green luminescent material and preparation method thereof

The invention discloses a di-nuclear cuprous complex green luminescent material and a preparation method thereof. The green luminescent complex provided by the invention is prepared by complexing cuprous iodide and a ligand, and the molecular structure of the complex is [CuI(DPPB)]2, wherein the DPPB in the formula is an electro-neutral 1,4-di(diphenylphosphine) butane containing a ligand P, and iodide ions of a bridging ligand are connected with the centers of two metal ions to form a di-nuclear structural molecule. The complex not only has the advantages that small molecules are easy to purify and the luminous efficiency is high but also has high thermal stability. The material is prepared through a direct mixing reaction between the cuprous iodide and a dichloromethane solution of the ligand, and has the advantages of simple and convenient process, simple equipment, easily-obtainable raw materials, low cost and the like. The material can be used as a green photo-luminescent material or used as a green luminescent layer material in an electroluminescent device consisting of a plurality of layers of organic materials.
Owner:CHINA JILIANG UNIV

Virus inactivator

A virus inactivator which can exhibit an inactivation activity involving structural disruption such as denaturation or decomposition on viruses, and which comprises a univalent copper compound such as cuprous oxide, cuprous sulfide, cuprous iodide and cuprous chloride as an active ingredient; and a virus-inactivating material which comprises a base material and the virus inactivator on the surface and / or the inside of the base material.
Owner:THE UNIV OF TOKYO +1

Cuprous iodide two-dimensional material, and preparation and application thereof

The invention relates to a preparation method of a cuprous iodide two-dimensional material. Cuprous iodide nanosheets and vertical heterojunctions thereof enrich the varieties of the new two-dimensional material and the heterojunctions, and provide new possibility for discovering new electronic and photoelectronic device equipment. The method comprises the following steps: putting a porcelain boat with cuprous iodide powder into a constant-temperature area of a tubular furnace, taking empty Si/300nmSiO2 or Si/300nmSiO2 with tungsten selenide and tungsten sulfide as a growing substrate of the nanosheet, and putting into a variable-temperature area at the downstream of the furnace to obtain proper crystal growth temperature; and taking argon as carrier gas, adjusting the flow of the argon to be 10 to 225 sccm, setting the temperature of the constant-temperature area to be 360 to 470 DEG C and maintaining constant temperature for 1 to 40 minutes to obtain the cuprous iodide two-dimensional material. The preparation methods of the tungsten selenide and tungsten sulfide nanosheets comprise the same steps as above. The cuprous iodide nanosheets have the thickness being 1 to 300 nm and the size being 1 to 5 microns, have regular triangular and hexagonal shapes and have high crystallinity, and the preparation method of the heterojunctions is simple.
Owner:HUNAN UNIV

Synthesis method of disubstituted urea compounds

The invention relates to a synthesis method of disubstituted urea compounds. The synthesis method comprises the following steps: (1) in an air atmosphere, adding amide, arylamine, cuprous iodide and 1,10-phenanthroline to a solvent N-N-dimethylformamide according to a molar ratio of 1:(1.0-2.0):(0.1-0.2):(0.2-0.4) and stirring at 110-130 DEG C till the reaction raw materials disappear; (2) by the end of the reaction, adding excess saturated salt water in to the system, extracting the product with ethyl acetate, washing an organic phase with saturated salt water, drying, and removing the solvent out of the organic phase through a rotary evaporator to obtain a crude product; and (3) purifying the crude product through column chromatography on silica gel in the presence of a developing solvent to obtain a corresponding disubstituted urea compound, wherein the developing solvent is selected according to the thin layer chromatography condition and the polarity condition of the products. The synthesis method of disubstituted urea compounds has the advantages that the raw materials are simple and easily available; the catalyst is cheap, a conventional solvent is used, and air is used as an oxidizing agent; and the operation is simple, the yield is medium to excellent; therefore, the synthesis method has a good development prospect in industrial production.
Owner:SHANGHAI UNIV

Preparation method for 1,4-disubstituted-1,2,3-triazole derivatives

The invention discloses a preparation method for 1,4-disubstituted-1,2,3-triazole derivatives, and belongs to the technical field of organic synthetic intermediates. According to the preparation method, any of the 1,4-disubstituted-1,2,3-triazole derivative is prepared by the following steps: adopting a cheap and readily available nitro compound as a raw material, performing reduction reaction on the nitro compound and a reducing agent at room temperature to obtain the compound I, performing oxidation reaction on the compound I and sodium nitrite to obtain a compound II, then performing azido reaction on the compound II and sodium azide to obtain a compound III, and finally performing reaction on the compound III and alkyne catalyzed by copper iodide, wherein the four reaction steps are continuous in operation, and intermediate products are free of separation. The preparation method has the advantages that the cost is low, the reaction efficiency is high and the operation is convenient, and can be used in industrial production; the synthesized compound contains a 1,2,3-triazole ring structure unit; the preparation method can be applied to synthesis and modification of the organic synthetic intermediates and drugs, and serve as a novel and efficient synthesis method for drug screening.
Owner:KUNMING UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products