Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

229 results about "Propyne" patented technology

Propyne (methylacetylene) is an alkyne with the chemical formula CH₃C≡CH. It was a component of MAPP gas—along with its isomer propadiene (allene), which was commonly used in gas welding. Unlike acetylene, propyne can be safely condensed.

Two fluorinated metal organic framework materials and preparation and low-carbon hydrocarbon separation application thereof

The invention discloses two fluorinated metal organic framework materials, preparation and low-carbon hydrocarbon separation application thereof, and belongs to the technical field of crystalline porous material preparation and gas separation. The two microporous copper-based MOF materials are formed by a cheap and easily available multi-coordination organic ligand 3-fluoroisonicotinic acid (FINA)and copper nitrate under different solvothermal conditions. The two MOF crystal structures have high porosity and have regular one-dimensional channels, the size of the channels is slightly larger than the molecular dynamics size of low-carbon hydrocarbon, and a structural basis is provided for adsorption separation of the low-carbon hydrocarbon gas molecules. Besides, hydrogen bond interaction sites exist in the pore channels, and alkyne molecules with smaller kinetic sizes can enter the pore channels easily after the pore channels are cut by fluorine atoms, and the acting force between alkyne gas molecules and the framework is enhanced so that the effect of preferentially adsorbing acetylene gas in acetylene-ethylene mixed gas and preferentially adsorbing propyne in propyne-propylene mixed gas is achieved, ethylene and propylene components in the mixed gas are purified, and the energy consumption in the separation process is reduced.
Owner:BEIJING UNIV OF TECH

Separation method for preparing low-carbon olefin gas through methanol conversion

The invention discloses a separation method for preparing low-carbon olefin gas through methanol conversion, and aims to solve the problems that products with high purity such as hydrogen, methane, ethane and propane which cannot be obtained in the prior art and oxygen, carbon oxide and the like in dimethyl enther and gas impurities cannot be effectively removed. According to the method, a step of removing the carbon oxide and the oxygen is increased, a methanol prepared olefin gas material flow from which the carbon oxide and the oxygen are removed enters a deethanizing column; the material flow on the top of the deethanizing column flows through an acetylene hydrogenation reactor, six separation tanks, a demethanizing column, an ethylene rectifying column and the like in sequence to separate to obtain ethylene and ethane products; and the material flow at the bottom of the deethanizing column flows through a propyne hydrogenation reactor, a methane stripping column, a propylene rectifying column and the like in sequence to separate to obtain propene and propane products. By using the separation method, polymer grade ethylene and propene products can be obtained, and products with high purity such as hydrogen, methane, ethane and propane can also be obtained.
Owner:CHINA PETROLEUM & CHEM CORP +1

Catalytic rectification method for removing MAPD by selective hydrogenation

ActiveCN102040446AHigh conversion selectivityLow inactivation effectHydrocarbon by hydrogenationGaseous fuelsHydrogenTower
The invention provides a catalytic rectification method for removing methyl acetylene and propadiene (MAPD) by selective hydrogenation. The method comprises the following steps of: placing a catalytic rectification member below a C3 fraction feeding position of a propylene rectification tower, introducing hydrogen into the tower from the lower part of the catalytic rectification member, and making the hydrogen upwards flow through the catalytic rectification member; and directly feeding the C3 fraction containing the MAPD into the propylene rectification tower or feeding the C3 fraction whichis pre-transformed through a first MAPD reactor into the propylene rectification tower to perform catalytic rectification and remove MAPD, directly recovering propylene meeting the polymerization level requirement from a lateral line, or recovering the material from the top of the tower, and removing light components to obtain polymerization level propylene, wherein the molar fraction of the MAPDin the tower can be directly reduced to below 0.1 to 2 percent. The method is characterized in that: by using the characteristic of low concentration of the propylene in the propylene rectification tower, the probability of side reaction of transforming the propylene into propane can be reduced, the selectivity of MAPD transformation is improved, and the purpose of high propylene yield is fulfilled.
Owner:CHINA PETROLEUM & CHEM CORP +1

Method for electrocatalytically and selectively reducing alkyne impurities in olefin

The invention relates to a method for electrocatalytically and selectively reducing alkyne impurities in olefin, particularly to electrocatalytical and selective hydrogenation of acetylene, propargyl,butyne, phenylacetylene and the like. According to the invention, a gas diffusion electrode electrolytic tank is adopted, a catalyst is sprayed on a gas diffusion layer substrate (including conductive carbon paper and metal) to prepare a gas diffusion electrode, a cathode and an anode are isolated by an ion exchange membrane, and a three-electrode or two-electrode system constant voltage method is adopted to carry out electrochemical performance test, wherein the reaction gas olefin contains 1% of alkyne impurities; experimental results show that the residual concentration of olefin can be reduced to 5 ppm or below by regulating and controlling a proper voltage range; and compared with a traditional thermal catalysis technology, the method of the invention can selectively reduce alkyne impurities in olefin into olefin at normal temperature and normal pressure without hydrogen consumption, can greatly reduce energy consumption and potential risks in the process, better meets the requirements of green chemical engineering, and has great strategic significance.
Owner:NORTHWESTERN POLYTECHNICAL UNIV

Selective hydrogenation method for allylene and allene in propylene material flow

The invention provides a selective hydrogenation method for allylene and allene in propylene material flow. The method comprises the following steps of: introducing the propylene material flow containing 1-(methylamino)-2,3-propanediol (MAPD) and hydrogen into a hydrogenation reactor filled with a supported palladium catalyst, and performing selective hydrogenation on the MAPD in the propylene material flow at the inlet temperature of between 10 and 80 DEG C and a molar ratio of the hydrogen to the MAPD of 1-5 under the reaction pressure of 0.1-4Mpa, so that the MAPD becomes propylene and is removed, wherein the catalyst comprises a carrier, palladium and optional modifying components; and a carbon monoxide adsorption in situ infrared ray spectroscopy is used for testing the catalyst at 40DEG C, and an area ratio of a bridge absorption peak at a position of 1,930-1,990cm<-1> to a bridge absorption peak at a position of 1870-1,930cm<-1> in an infrared spectrum is less than 0.2 and preferably less than 0.15. By the method, the selective hydrogenation reaction for the allylene and allene in the propylene material flow has high selectivity, and can be stably performed for a long period.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products