Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

33results about How to "Enhance the quantum effect" patented technology

Fabrication of silicon nano wires and gate-all-around MOS devices

The invention relates to methods for manufacturing semiconductor devices. Processes are disclosed for implementing suspended single crystal silicon nano wires (NWs) using a combination of anisotropic and isotropic etches and spacer creation for sidewall protection. The core dimensions of the NWs are adjustable with the integration sequences: they can be triangular, rectangular, quasi-circular, or an alternative polygonal shape. Depending on the length of the NWs, going from the sub-micron to millimeter range, the NWs may utilize support from anchors to the side, during certain processing steps. By changing the lithographic dimensions of the anchors compared to the NWs, the anchors may be reduced or eliminated during processing. The method covers, among other things, the integration of Gate-All-Around NW (GAA-NW) MOSFETs on a bulk semiconductor. The GAA structure may consist of a silicon core fabricated as specified in the invention, surrounded by any usable gate dielectric, and finally by a gate material, such as polysilicon or metal. The source and drain of the GAA-NW may be connected to the bulk semiconductor to avoid self heating of the device over a wide range of operating conditions. The GAA-NW MOS capacitor can also be used for the integration of a Gate-All-Around optical phase modulator (GAA modulator). The working principle for the optical modulator is modulation of the refractive index by free carrier accumulation or inversion in a MOS capacitive structure, which changes the phase of the propagating light.
Owner:ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Preparation method of zinc-doped titanium dioxide nano-tube array

The invention belongs to the technical field of photoelectric materials and specially, relates to a preparation method of a zinc-doped titanium dioxide nano-tube array. The preparation method comprises the following steps that 1, an electrolyte of a HF aqueous solution having HF content of 0.3 to 1.0 wt%, an anode of pure titanium foil subjected to surface pretreatment and a cathode of a Pt sheet undergo an electrochemical anodization reaction under direct voltage of 10 to 50V to produce a titanium dioxide nano-tube array; and the titanium dioxide nano-tube array as a cathode, an anode of a platinum sheet and an electrolyte of a Zn(NO3) solution having concentration of 0.1 to 0.5mol/L undergo an electrochemical deposition reaction under direct voltage of 0.3 to 1.0V so that zinc is added into titanium dioxide nano-tube layers and the zinc-doped titanium dioxide nano-tube array is obtained. The preparation method provided by the invention has the advantages that ion implantation time is short; and doped ions Zn<2+> can enter into a titanium dioxide nano-tube under a electric field force and capillary action so that the zinc-doped titanium dioxide nano-tube array having good photoelectric properties and a light absorption range widen to a visible light range is prepared.
Owner:CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Method for producing nano-scale rare earth doping composite oxides sosoloid with low-temperature carbothermic method

The invention relates to a method using a low temperature carbothermic method to prepare a solid solution of nanometer calcium oxide based rare earth mixed with composite oxide. The method has the technical proposal that 0.25M to 0.5M of Ca(NO3)2, 0.5M to 1.0M of rare earth nitrate and 0.625 M to 1.25M of CaAC2 solution are prepared, and the same amount of solution is taken to be well mixed; distilled water is added, and the solution is further dissolved and well mixed; the solution is heated to 140 DEG C to 160 DEG C with an electric jacket, and after self-propagating combustion happens to release large amounts of brown gas and generate fluffy powder, a proper amount of precursor powder is weighted to be put into a porcelain boat; after the proper amount of precursor powder is calcined for 1 to 2 hour(s) at 750 DEG C to 900 DEG C with a muffle furnace, the solid solution of nanometer calcium oxide based rare earth mixed with composite oxide is obtained. In the invention, a new synthetic route and technology is adopted, thereby the method has the advantages of comparatively lower cost, simple technology, mild conditions, short experimental period and time and energy conservation. Simultaneously, utilizing the analysis of a modern instrument can indicate that the synthesized solid solution of nanometer calcium oxide based rare earth mixed with composite oxide is provided with a nanometer structure, and the size is uniform, thereby providing possibility for improving the application in the field of tail gas treatment and environmental friendly plastics.
Owner:FUJIAN NORMAL UNIV

Solid-state perovskite cluster and preparation method thereof and photoelectric device

The invention belongs to the technical field of photoelectricity, and particularly relates to a solid-state perovskite cluster and a preparation method thereof and a photoelectric device. The preparation method of the solid-state perovskite cluster comprises the following steps: preparing a precursor solutionfrom organic carboxylic acid, an organic amine ligand and a perovskite raw material; mixing the precursor solution with an anti-solvent to obtain a perovskite cluster solution with a passivated surface; and adding a shell forming substance into the perovskite cluster solution to form a shell layer on the surface of the perovskite cluster, and separating to obtain the solid-state perovskite cluster with the core-shell structure. According to the preparation method of the solid-state perovskite cluster, organic carboxylic acid and an organic amine ligand are added into a precursor solution, and a shell layer is formed on the surface of the perovskite cluster, so that the perovskite cluster can be separated and separated out in a solid state, and the perovskite cluster has the stability of resisting external environmental factors such as water and oxygen, and the application prospect of the perovskite cluster in photoelectric devices is improved.
Owner:SHENZHEN INST OF ADVANCED TECH CHINESE ACAD OF SCI

A Nitride Light Emitting Diode

The invention discloses a nitride light-emitting diode. The nitride light-emitting diode sequentially comprises a substrate, N type nitride, a multi-quantum well, V-shaped pits, first AlN / AlxGa1-xN superlattices, local area quantum states formed by In quantum dots / InN quantum dots, a composite structure formed by second AlN / AlxGa1-xN superlattices, P type nitride and a P type contact layer, the first AlN / AlxGa1-xN superlattices, the local area quantum states formed by the In quantum dots / InN quantum dots and the composite structure formed by the second AlN / AlxGa1-xN superlattices are deposited in the V-shaped pits of the multi-quantum well, an upper AlN / AlxGa1-xN superlattice structure and a lower AlN / AlxGa1-xN superlattice structure in each V-shaped pit block dislocation in the corresponding V-shaped pit and stop the dislocation from continuing extending upwards, dislocation is effectively reduced, nonradiative recombination is lowered, electric leakage is reduced, ESD is improved, and light-emitting efficiency and intensity are improved; by means of the mixed local area quantum state formed by the In quantum dots / InN quantum dots between the two superlattice structures, the quantum effect of the quantum well is improved, and light-emitting efficiency and intensity are further improved.
Owner:QUANZHOU SANAN SEMICON TECH CO LTD

Cerium-doped nano titanium dioxide/activated carbon fiber composite photocatalyst for air purification and preparation method thereof

The invention discloses a cerium-doped nano titanium dioxide / activated carbon fiber composite photocatalyst for air purification and a preparation method thereof. The preparation method comprises the following steps: doping cerium nitrate into nano titanium dioxide to obtain the cerium-doped nano titanium dioxide suspension, putting proper amount of activated carbon fiber into the suspension, soaking for 20-60 minutes under ultrasonic conditions, taking out, airing, and keeping the temperature at 200-220 DEG C for 2-4 hours, thereby obtaining the cerium-doped nano titanium dioxide / activated carbon fiber composite photocatalyst for air purification. Compared with the prior art, the rare-earth cerium is doped into the nano titanium dioxide, thereby prolonging the service life of photovoltaic electron-hole pairs, enhancing the quantum effect of the nano titanium dioxide, and further enhancing the photocatalytic activity of the nano titanium dioxide; and the whole method is simple and easy to control; and the product prepared by the method has high degradation efficiency for volatile organic pollutants, especially formaldehyde gas, reaching more than 90%.
Owner:ZHEJIANG GLOBALVILLAGE TECH INNOVATION CO LTD

Method for producing nano-scale rare earth doping composite oxides sosoloid with low-temperature carbothermic method

The invention relates to a method using a low temperature carbothermic method to prepare a solid solution of nanometer calcium oxide based rare earth mixed with composite oxide. The method has the technical proposal that 0.25M to 0.5M of Ca(NO3)2, 0.5M to 1.0M of rare earth nitrate and 0.625 M to 1.25M of CaAC2 solution are prepared, and the same amount of solution is taken to be well mixed; distilled water is added, and the solution is further dissolved and well mixed; the solution is heated to 140 DEG C to 160 DEG C with an electric jacket, and after self-propagating combustion happens to release large amounts of brown gas and generate fluffy powder, a proper amount of precursor powder is weighted to be put into a porcelain boat; after the proper amount of precursor powder is calcined for 1 to 2 hour(s) at 750 DEG C to 900 DEG C with a muffle furnace, the solid solution of nanometer calcium oxide based rare earth mixed with composite oxide is obtained. In the invention, a new synthetic route and technology is adopted, thereby the method has the advantages of comparatively lower cost, simple technology, mild conditions, short experimental period and time and energy conservation. Simultaneously, utilizing the analysis of a modern instrument can indicate that the synthesized solid solution of nanometer calcium oxide based rare earth mixed with composite oxide is provided with a nanometer structure, and the size is uniform, thereby providing possibility for improving the application in the field of tail gas treatment and environmental friendly plastics.
Owner:FUJIAN NORMAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products