Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

442 results about "Chloroacetyl chloride" patented technology

Chloroacetyl chloride is a chlorinated acyl chloride. It is a bifunctional compound, making it a useful building block chemical.

Surface imprinted polymer for catalyzing degradation of organophosphorus pesticide and preparation method thereof

InactiveCN101942062AOvercome the disadvantages of poor mechanical properties and difficulty in repeated useOvercoming heterogeneous featuresOrganic-compounds/hydrides/coordination-complexes catalystsCross-linkPolymer science
The invention discloses a surface imprinted polymer for catalyzing degradation of an organophosphorus pesticide and a preparation method thereof and relates to the field of surface imprinted polymers. The preparation method comprises the following steps of: preparing polystyrene seeds by a soap-free emulsion method; preparing polystyrene microspheres with particle diameter of 2 to 6 microns by a fractional swelling method; and bonding a chain transfer agent on the surfaces of the polystyrene microspheres. The preparation method comprises the main steps of: performing chloride acetylation on the microspheres with chloroacetic chloride, then aminating with ethydene diamine and then bonding the chain transfer agent with an amino; adding a template molecule under a proper solvent and performing graft polymerization on an amino acid derivative functional monomer and a cross-linking agent on the surfaces of the microspheres to form the needed polymer carrier surface template imprinted microspheres. The surface imprinted polymer with catalyzing, degrading and purifying functions on an organophosphorus compound is synthesized by taking an organophosphorus compound catalyzing and degradingreaction substrate as the template and organically combining the high-crosslinking degree insoluable porous polymeric microspheres with the template imprinting technology through a surface controllable graft hydrogel.
Owner:NANKAI UNIV

Ferroferric oxide nano-composite particle and preparation method and applications thereof

The invention discloses a ferroferric oxide nano-composite particle and a preparation method and applications thereof. The composite particle is a ferroferric oxide nano-composite particle with the particle size of 10-30nm, and 1,4-dihydroxy anthraquinone and fluorenylmethoxycarbonyl are modified on the surface of the ferroferric oxide nano-composite particle. The preparation method comprises the steps of: firstly, carrying out a hydrothermal method on ferric trichloride hexahydrate, sodium acetate, 1,6-hexanediamine and ethanediol to obtain the ferroferric oxide nano-composite particle, then producing 1,4-dihydroxy anthraquinone, chloroacetyl chloride, and N,N-dimethylformamide into dyes, then adding the ferroferric oxide nano-composite particle, sodium carbonate and the dyes into acetonitrile to carry out a reflux reaction, carrying out solid-liquid separation, washing and drying on the obtained reaction liquor to obtain an intermediate product, then dispersing the intermediate product into the N,N-dimethylformamide, adding dispersion liquid into the fluorenylmethoxycarbonyl, stirring for 2 hours, and carrying out solid-liquid separation, washing and drying to obtain a target product. The ferroferric oxide nano-composite particle can be used for fast detecting four heavy metal ions, namely copper, zinc, cadmium and mercury in an aqueous solution.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Preparation method of polyamino phosphoric acid functional-born polyether sulfone functional separating membrane

The invention relates to a preparation method of polyamino phosphoric acid functional-born polyether sulfone functional separating membrane. The preparation method mainly comprises the following steps: by taking trichloromethane, chloroacetyl chloride and anhydrous aluminum chloride as main reagents, performing chloracetylation to the polyether sulfone at room temperature; then by taking N,N-dimethylacetylamide as a solvent and tetraethylenepentamine as an amination reagent, performing amination to the polyether sulfone, subjected to chloracetylation, at the temperature of 80-85DEG C, and preparing chloroacetyl chloride-tetraethylenepentamine- polyether sulfone anion-exchange membrane; then in methanol and triethylamine solution, by taking paraformaldehyde and phosphorous acid as reagents, performing phosphorylation graft modification to the chloroacetyl chloride-tetraethylenepentamine- polyether sulfone anion-exchange membrane, to prepare the polyamino phosphoric acid functional-born polyether sulfone functional separating membrane. The preparation method has good technological stability, the chelated functional groups of the prepared polyether sulfone functional separating membrane are difficult to lose, and the heavy metal pollutants in water environment can be effectively removed.
Owner:YANSHAN UNIV

Synthesis method of epinastine

ActiveCN103012408ASynthetic Method AdvantagesReduce usageOrganic chemistrySilanesSynthesis methods
The invention discloses a synthesis method of epinastine. The synthesis method is implemented by taking 2-aminobenzophenone as a raw material and comprises the following steps of: reacting the 2-aminobenzophenone with a silane agent to obtain 2-benzylaniline; then, carrying out acylation reaction on the 2-benzylaniline and 2-chloroacetyl chloride to obtain N-(2-benzyl phenyl)-2-chloroacetamide; carrying out acidamide dehydration and cyclization on the N-(2-benzyl phenyl)-2-chloroacetamide under the action of a dehydrating agent to obtain 6-(chloromethyl)-11H-dibenzo[b,e] azepine; carrying out azidation reaction on the 6-(chloromethyl)-11H-dibenzo[b,e] azepine to obtain 6-(azido-methytbiphenyl)-11H-dibenzo[b,e] azepine; carrying out reduction on the 6-(azido-methytbiphenyl)-11H-dibenzo[b,e] azepine to obtain 6-(aminomethyl)-6,11-dihydro-1H-dibenzo[b,e] azepine; and finally, carrying out cyclization on the 6-(aminomethyl)-6,11-dihydro-1H-dibenzo[b,e] azepine and cyanogen bromide to obtain the epinastine. The synthesis method disclosed by the invention avoids the application of expensive and flammable lithium aluminium hydride and aluminium hydride as well as hypertoxic sodium cyanide, so that the operation is safer in industrial production, and the cost is reduced. The method is simple in process and high in yield, requires mild conditions, and is suitable for industrialized production.
Owner:GUANGZHOU INST OF BIOMEDICINE & HEALTH CHINESE ACAD OF SCI

Process for preparing cefathiamidine

The invention relates to the field of the synthesis of chemical medicaments and discloses a preparation method of cefathiamidine; the method takes chloracetyl chloride as a raw material and comprises the following steps: (1) on the condition of the presence of a solvent, alkali is added so as to cause 7-ACA to be dissolved, and then the chloracetyl chloride is added for a condensation reaction; after the condensation reaction is finished, chloracetyl 7-ACA crystals are separated out with an acid; and (2) on the condition of the presence of both the solvent and a catalyst of a catalyzing amount, the chloracetyl 7-ACA reacts with N, N-di-isopropyl thiourea to produce the cefathiamidine. Besides the advantages of bromoacetyl-bromide preparation method of cefathiamidine, the technology of adopting chloracetyl chloride as the raw material to produce the cefathiamidine also has the advantages that: as no alkali is added into the reaction between the chloracetyl 7-ACA and the N, N-di-isopropyl thiourea, the produced cefathiamidine has lighter color, and better and more stable quality, is more beneficial to store and transport, improves the overall yield, lowers the cost and has broader prospects; and the price of the chloracetyl chloride is one sixth of that of the bromoacetyl bromide, which significantly reduce the cost.
Owner:GUANGZHOU BAIYUNSHAN PHARM CO LTD

Preparation method of difenoconazole

InactiveCN102250072ASave bromination reaction stepHigh cost of solutionOrganic chemistrySulfolaneChlorobenzene
The invention relates to a preparation method of difenoconazole, comprising the steps of: (1) in the presence of aluminium trichloride, subjecting 3, 4'-dichloro diphenyl ether and chloroacetyl chloride to a Friedel-Crafts reaction so as to generate chlorobenzene ether ketone; (2) in the presence of a catalyst, conducting a cyclisation reaction to chlorobenzene ether ketone and 1, 2-propylene glycol, thus obtaining cis, trans-3-chlorine-4-(4-methyl-2-chloromethyl-1, 3-dioxolane-2-yl) phenyl-4'-chlorophenyl ether; (3) in the presence of sulfolane, carrying out a condensation reaction at a temperature of 190-230DEG C to cis, trans-3-chlorine-4-(4-methyl-2-chloromethyl-1, 3-dioxolane-2-yl) phenyl-4'-chlorophenyl ether and 1, 2, 4-triazole, thus obtaining cis, trans-3-chlorine-4-[4-methyl-2-1H-1, 2, 4-triazole-1-ylmethyl]-1, 3-dioxapentane-2-yl) phenyl 4-chlorophenyl ether, then performing filtration and exsolution when the reaction is over, thus obtaining a crude product of difenoconazole; (4) implementing rectification to the crude product, then carrying out crystallization with a solvent and performing centrifugation, thus obtaining the product of difenoconazole. The method provided in the invention has the advantages of short production period, low production cost and good production security.
Owner:JIANGSU SEVENCONTINENT GREEN CHEM CO LTD

Preparation method of 4-(nitrobenzophenone)-3-morpholone and method for preparing rivaroxaban by using 4-(nitrobenzophenone)-3-morpholone

The invention relates to the technical field of preparation of rivaroxaban and an intermediate thereof and particularly relates to a preparation method of 4-(nitrobenzophenone)-3-morpholone which is prepared from halogenated nitrobenzene, ethanolamine and chloroacetyl chloride through a one-pot method. The method for preparing rivaroxaban comprises the steps of reducing 4-(nitrobenzophenone)-3-morpholone into 4-(aminophenyl)-3-morpholone; enabling 4-(aminophenyl)-3-morpholone to react with R-epichlorohydrin to obtain a product; enabling the product to react with N, N-carbonyldiimidazole to obtain a product; enabling the product to react with tert-butyl iminodicarboxylate; preparing hydrochloride; enabling hydrochloride to react with 5-penphene-2-carbonyl chloride. The preparation method of 4-(nitrobenzophenone)-3-morpholone is capable of realizing one-pot production and free of purifying intermediate products in the process, so that the operation process is simplified, the time is saved, and the labor cost is reduced; the preparation method of 4-(nitrobenzophenone)-3-morpholone is low in raw material price, high in obtained product yield and easy to realize large-scale industrial production; in addition, the method for preparing rivaroxaban is cheap, nontoxic and harmless in raw material, simple in process and high in product yield.
Owner:山东康美乐医药科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products