Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

104 results about "Hydroxyapatite crystal" patented technology

Preparation method of open tubular capillary electrochromatographic column

The invention relates to a preparation method of a novel open tubular capillary electrochromatographic column for fixing hydroxyapatite as a stationary phase by adopting a bio-ore physical-chemical method. The hydroxyapatite is used as an inorganic material, and is short of active groups, thereby being difficultly fixed on the wall of a capillary tube for capillary electrochromatographic separation. The preparation method comprises the steps of: introducing a pre-oxidized dopamine solution into a preprocessed capillary tube, forming a polydopamine coating on the inner wall of the capillary tube; and introducing a 1.5-time simulated body fluid into the capillary tube modified by polydopamine, placing the capillary tube in a water bath kettle being 37 DEG C for incubation for two weeks, and growing a hydroxyapatite crystal with a nano structure on the inner wall of the capillary tube. The preparation method provided by the invention is simple in process, easy to operate and low in cost; and the whole preparation process is carried out in a water solution without polluting the environment. A hydroxyapatite open tubular column prepared by adopting the preparation method has a good separation effect on a neutral compound, an alkali compound and an acidic compound.
Owner:WUHAN UNIV

Preparation method for nano hydroxylapatite doped with metal ions

The invention relates to a preparation method of nano hydroxylapatite doped with metal ions, which comprises the following steps of: firstly, respectively preparing Ca(NO3)2 and (NH4)2HPO4 solution, mixing the Ca(NO3)2 and (NH4)2HPO4 solution, and obtaining clear and transparent solution A; adding metal nitrate into solution A and obtaining clear and transparent solution B; adding CO(NH2)2 into solution B, and obtaining solution C; finally heating and backflowing the solution C for 3 to 5 hours with the temperature of 100 DEG C under the magnetic force stirring; after the reaction is end, naturally cooling to room temperature; then vacuum-filtering, cleaning with water, drying for 24 hours under the temperature of 100 DEG C; and finally, obtaining nano hydroxylapatite crystal doped with metal ions. The preparation method adopts a metal salt solution heating even precipitation method, and takes inorganic salts containing calcium and phosphate group as raw materials; urea is acidity of a control reaction system of an additive; metal salts are added according to the doped proportion of 1 percent to 5 percent; reaction is carried out under the magnetic force stirring and heating conditions; and the backflowing of reaction liquid is adopted to synthesize nanoscale metal-doped nano hydroxylapatite crystal by one step. The method is obviously characterized by even doping and easy control for added amount.
Owner:SHAANXI UNIV OF SCI & TECH

Silk fibroin base integrated osteochondral two-layer bracket, preparation and application thereof

The invention discloses a silk fibroin base integrated osteochondral two-layer bracket, preparation and application thereof. The preparation of the silk fibroin base integrated osteochondral two-layer bracket is carried out by the following steps of: respectively soaking parts of 1/2-3/4 height of a three-dimensional silk fibroin bracket in a calcium chloride ethanol solution, absolute ethyl alcohol, a dipotassium phosphate aqueous solution and de-ionized water; repeating the above operation for 1-15 times, taking the silk fibroin bracket finally soaked by the de-ionized water to soak in the calcium chloride ethanol solution for 5-30 min and subsequently using the de-ionized water to soak the silk fibroin bracket for 3-10 min and pre-calcify the three-dimensional silk fibroin bracket; then soaking the pre-calcified part of the three-dimensional silk fibroin bracket in a bionic calcium ion buffer solution and culturing for 4-8 days at a constant temperature of 37 DEG C to obtain the silk fibroin base integrated osteochondral two-layer bracket. In the pre-calcification process of the invention, the silk fibroin bracket can obtain a nucleating locus of hydroxyapatite crystals; and evenly dispersed weak crystallization nano hydroxyapatites are formed on the surfaces of the porous channels of the bracket by culturing the bracket in the bionic calcium ion buffer solution.
Owner:ZHEJIANG UNIV

Polydopamine-modified halloysite nanotube / polylactic acid composite material and preparation and application thereof

The present invention discloses a polydopamine-modified halloysite nanotube / polylactic acid composite material and preparation and application thereof. The polydopamine-modified halloysite nanotube / polylactic acid composite material comprises 0.05 to 60% by mass of polydopamine-modified halloysite nanotubes and 40 to 99.95% by mass of polylactic acid. By surface modification of the halloysite nanotubes, dispersion of the halloysite nanotubes in a polylactic acid matrix and interface compatibility of the halloysite nanotubes and the polylactic acid matrix can be solved, and the polylactic acid matrix can be effectively enhanced by the halloysite nanotubes; excellent cell affinity and osteogenic activity can be given to the polydopamine-modified halloysite nanotube / polylactic acid composite material, and more significantly, by the use of biological mineralization of a polydopamine layer on the surface of the halloysite nanotubes for formation of hydroxyapatite crystals, eventually good osteo inductivity can be given to the polydopamine-modified halloysite nanotube / polylactic acid composite material. The polydopamine-modified halloysite nanotube / polylactic acid composite material is simple in preparation method, mild in reaction conditions, low in price, and suitable for industrial production.
Owner:JINAN UNIVERSITY

Preparation technology of PCL/GE (polycaprolactone/gelatin) electrospinning composite stent

The invention discloses a preparation technology of a PCL / GE (polycaprolactone / gelatin) electrospinning composite stent, and belongs to the technical field of biological tissue engineering stents. The preparation technology sequentially comprises a preparation technology of a PCL / GE nanometer fiber electrospinning film which is made of an artificial cell extracellular matrix (ECM) stent material, a preparation method of an electrospinning film coated with hydroxyapatite crystals, and a building method of the electrospinning composite stent. The preparation technology has the advantages that the electrospinning film coated with the hydroxyapatite crystals and the PCL / GE electrospinning film are combined to form an ECM structure which is similar to natural bone tissues; the prepared electrospinning composite stent has no obvious cell toxicity, the internal stent structure is similar to the ECM of the natural bone tissues, and the outer layer structure can block the invasion of peripheral connective tissues; the biocompatibility is good, and the regeneration of bone tissues can be effectively promoted; a stable environment is provided for the regeneration of new bones, and the structure and function of the ECM of the normal bone tissues can be simulated.
Owner:JIANGSU PROVINCE HOSPITAL

Preparation method of superhydrophobic hydroxyapatite film layer on surface of magnesium alloy

InactiveCN107789665AReduce corrosionCorrosive water environment contact, isolation and corrosion delayPharmaceutical delivery mechanismLiquid/solution decomposition chemical coatingMicron scaleStearic acid
The invention provides a preparation method of a superhydrophobic hydroxyapatite film layer on the surface of magnesium alloy. The preparation method comprises the following steps: performing surfacepretreatment, preparing a nano-structured hydroxyapatite layer by a hydrothermal method and performing hydrophobization treatment to the hydroxyapatite layer. The hydrothermal method is designed, andby the hydrothermal method, a rod-shaped hydroxyapatite crystal layer adopting micron-scale length and nano-scale diameter is prepared on the surface of the magnesium alloy, then a stearic acid film is prepared on the surface of the nano-structured hydroxyapatite film layer to form a superhydrophobic film layer with the contact angle of 153 degrees under a static droplet, the film layer can reducethe corrosion current density of the magnesium alloy by 2 orders of magnitude and the impedance modulus of coating is increased from 2029 Omega.cm2 to 117674 Omega.cm2. The preparation method of thenano-structured hydrophobic coating is simple, equipment is simple and easy to control, the cost is low, and the controllability is good; the preparation method is suitable for large-scale production.
Owner:CHONGQING UNIV OF TECH

Preparation method for regenerating dental prosthetic material and acidic amino acid-induced demineralized dental enamel outer enamel prism thereof in situ

The invention discloses a method for regenerating a dental prosthetic material and an acidic amino acid-induced demineralized dental enamel outer enamel prism thereof in situ, and belongs to the technical field of in-situ regeneration of dental enamel outer enamel prisms. The preparation method is as follows: firstly, carrying out surface calcium activation onto a dental enamel surface, i.e., grafting calcium ions; then, forming calcium carbonate stable calcium ions step by step; finally, taking calcium carbonate stable calcium ions as foundation forms to synthesize hydroxyapatite crystals. Amino acid participates in the whole process, concentration of the amino acid added in a two-step process is consistent. The hydroxyapatite crystals deposited on the surface of the demineralized dental enamel are orderly and compact in sequence, and uniform in crystal morphology, so that obvious continued growth tendency of an artificial layer can be seen. The preparation method disclosed by the invention lowers protein extracting cost and harsh restrictions on an application environment, and is wide in prospect. The material prepared by the method disclosed by the invention can be applied to cosmetic dental for filling demineralization gaps, also can be used for repairing early-stage enamel demineralization, and can be used as a combined material for bottom pulp capping pit and fissure sealing, and the like.
Owner:JILIN UNIV

Method for preparing high dispersancy nano hydroxyapatite colloidal sols in water solution

The invention discloses a preparation method of high dispersive nano-hydroxyapatite sol in water solution. The method takes sodium citrate and sodium hexametaphosphate as dispersing agents and adopts the two-step process to obtain the high dispersive sol of nano-hydroxyapatite which has the rod-shaped granules with the diameter of 10 to 20nm and the length of 100 to 300nm. The invention has simple process, low experimental conditions and no need of expensive equipments, at the same time, the invention does not introduce organic surfactant, and the stabilizer used is basically harmless to the environment and the biological bodies, furthermore, the invention adopts the two-step method to add the dispersing agents, so the invention can prepare the high dispersive nano-hydroxyapatite sol in a very wide temperature range; the invention makes use of the high dispersity of hydroxyapatite granules to solve the agglomeration problem of inorganic granules in nano-hydroxyapatite polymer compound biological materials, thereby greatly increasing the mechanical properties and the anisotropism of the mechanical properties of the materials and allowing the orthotropic mechanical properties to be more in line with the characteristics of human bone, so the invention can bring benefits to a plurality of patients with bone defects and is also the application direction of hydroxyapatite crystal on the medical clinical aspect.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Tissue-engineered bone cartilage composite scaffold and preparation method thereof

The invention discloses a tissue-engineered bone cartilage composite scaffold and a preparation method thereof, belonging to the technical field of biomaterials. The scaffold is of a multilayer integrated structure and comprises a cartilage tissue scaffold layer, a cartilage tissue calcified layer, a porous cell isolation membrane and a bone tissue scaffold layer. The cartilage tissue scaffold layer is inoculated with cartilage cells, and growth factors for promoting formation of cartilage are introduced to promote growth of cartilage cells. Main raw materials like heparan sulfate proteoglycan with good biocompatibility and degradability are selected and used and the method consisting of a cross-linking reaction, freeze drying, directional pore formation, compounding of multiple layers, overall integration and the like are carried out so as to obtain the functionalized multilayer integrated tissue-engineered bone cartilage composite scaffold with good mechanical properties. According to the invention, micro-nano hydroxyapatite crystal, degradable non-stoichiometric polyethylene glycol / poly(epsilon-caprolactone) nanometer coaxial short fiber, RGD-grafted heparan sulfate proteoglycan / oxidized sodium alginate and N-succinyl chitosan are compounded together to prepare the composite scaffold; and the composite scaffold is mainly used for restoration of full-thickness defects of articular cartilage and subchondral bone.
Owner:SOUTHWEST JIAOTONG UNIV

Method for melting deposition molding 3D printing of personal artificial tooth withartificial bone material

The invention provides a method for melting deposition molding 3D printing of a personal artificial tooth with an artificial bone material. The method comprises the following six steps: preparing a polyether-ether-ketone suspension, preparing a hydroxyapatite crystal whisker suspension, compounding an artificial bone material, performing three-dimensional molding design on an artificial tooth, performing melting deposition molding 3D printing on the artificial tooth and an artificial tooth planting guide plate, performing surface treatment on a planted part of the artificial tooth, and the like. As polyether-ether-ketone and hydroxyapatite crystal whiskers are adopted to compound an artificial bone material as a raw material for the artificial tooth, the artificial tooth is printed by adopting a melting deposition molding 3D printing manner, and furthermore surface treatment is implemented to expose a hydroxyapatite crystal whisker fiber head on the surface of the planted part of the artificial tooth, significant promotion functions on adhesion, proliferation and differentiation of cells are achieved. By adopting the method, personal artificial teeth can be rapidly made and planted, the cost can be minimized, and the operation is safe. The artificial tooth made with the method is relatively good in biocompatibility and bone junction strength when being compared with common artificial teeth.
Owner:NANNING YUEYANG TECH

Oil-soluble/water-soluble organic-inorganic three-phase porous micro-nanometer composite bone repair material

The invention discloses an oil-soluble/water-soluble organic-inorganic three-phase porous micro-nanometer composite bone repair material and a preparation method thereof. From the bionic angle, for better simulating the components, structure and function of natural bone tissues, chitosan and collagen are selected as water-soluble organic matrixes; an oil-soluble high-molecular material polylactic acid is added for improving the performance; a water-soluble phase can be combined with an oil-soluble phase by crosslinking; an in-situ crystallization process of inorganic calcium and phosphorus mineral in the natural bone tissues under the regulation and control of organic matrix biological large molecules is simulated by a hybridization method; a nanometer hydroxyapatite crystal is synthesized on the matrix; an artificial bone defect repair scaffold similar to natural bone extracellular matrix is molded and prepared by utilizing a freeze-drying phase separation technology. The preparation method of the oil-soluble/water-soluble organic-inorganic three-phase porous micro-nanometer composite bone repair material disclosed by the invention is simple in procedures and mild in condition; the prepared composite scaffold is similar to natural bone matrix in constitution and structure, has a typical micro-nanometer structure (micrometer-grade hole diameter size and nanometer crystal), is excellent in performance and high in figurability and can be processed into required shapes.
Owner:FUZHOU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products