Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1942 results about "Sodium borohydrate" patented technology

Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, is an inorganic compound with the formula NaBH4. This white solid, usually encountered as a powder, is a reducing agent that finds wide application in chemistry, both in the laboratory and on a technical scale.

Method for preparing formaldehyde room temperature oxidation catalyst

The invention relates to a method for preparing formaldehyde room temperature oxidation catalyst. The method comprises the following steps: making porous inorganic oxide as a carrier; making sodium borohydride as reducing agent; making soluble hydroxide as additive; and drying the carrier including noble metal processed by carrier impregnation noble metal precursor-room temperature reduction-deposition so as to prepare catalyst. According to the invention, sodium borohydride reducing agent is added for one time at the room temperature, thus, the aperture of generated noble metal nano particle is smaller than that of particle prepared in a high-temperature burning / hydrogen reducing method; crystal particle is within 0.1-5nm; and dispersibility is good; the loading quantity of the noble metal is within 0.05-10wt%, preferably within 0.5-2%; corresponding aperture is within 0.5-3nm; prepared loading-type noble metal catalyst has very high oxidative activity to formaldehyde in air on a room temperature condition without illumination or heat; activity is not changed basically in repeated using procedures; and the method disclosed by the invention is characterized by simple compound line, easily-acquired raw material and is suitable for industrial production.
Owner:WUHAN UNIV OF TECH

Layered double hydroxide and preparation method thereof

The invention relates to a layered double hydroxide and a preparation method thereof, belonging to the technical field of metal hydroxide preparation. A chemical formula of the layered double hydroxide is as follows: (M1(1-x)M2x(OH)2)(A<n->)x/n), wherein x is larger than or equal to 0.2 and smaller than or equal to 0.33; M1 represents any one or more of divalent metal ions including Mg<2+>, Zn<2+>, Ni<2+>, Co<2+>, Ca<2+>, Cu<2+>, Fe<2+> and Mn<2+>; M2 represents any one or two of trivalent metal ions including Fe<3+> and Al<3+>; A<n-> represents any one of interlayer anions including CO3<2->,NO3<->, Cl<-> and SO4<2->; and the grain size ranges from 12 nm to 80 nm. The invention has the advantages that the preparation method is a direct method for preparing the layered double hydroxide with high crystallinity, layered structure regularity, wide application range and adjustable particle size. The preparation method comprises the following steps: obtaining highly dispersed metal nanoparticle sol by utilizing the action of colloid mill axial shear force and the sodium borohydride reducibility, and then performing slow oxydrolysis in a hydrothermal system, and the like to generate thenano layered double hydroxide with layered structure regularity and adjustable particle size. The method has the advantages of wide application range, low cost, simple operation and environmental protection.
Owner:BEIJING UNIV OF CHEM TECH

Method for chemically plating nickel on surface of carbon fiber

The invention relates to a method for chemically plating nickel on the surface of carbon fiber. The invention aims to solve the problem that the existing method for chemically plating the nickel on the surface of the carbon fiber causes environment pollution, is unstable in activation fluid, complex in operation, and low in plating layer bonding intensity. The method comprises the following steps of: 1, firstly, removing glue and oil from the surface of the carbon fiber; 2, soaking in concentrated nitric acid for coarsening, then washing by distilled water under the help of ultrasound, and finally drying into constant weight, so that the cleaned and coarsened carbon fiber can be obtained; 3, firstly, soaking the obtained product in the activation fluid, then washing by distilled water and soaking in sodium borohydride solution to be reduced, and finally rewashing by distilled water, so that the activated carbon fiber can be obtained; and 4, soaking into chemical nickel-plating liquid, withdrawing, and washing by distilled water, and then drying into constant weight, so that the nickel can be chemically plated on the surface of the carbon fiber. The method for is mainly used for chemically plating the nickel on the surface of the carbon fiber.
Owner:NORTHEAST FORESTRY UNIVERSITY

Preparation method of nitrogen-doped graphene loaded platinum nano-particle catalyst

The invention discloses a preparation method of a nitrogen-doped graphene loaded platinum nano-particle catalyst. The preparation method comprises the following steps of: firstly, preparing graphene oxide (GO); secondly, preparing polyaniline/graphene oxide (PANI/GO) through a liquid-liquid interface polymerization method; thirdly, drying the PANI/GO, transferring the dried PANI/GO into a tubular furnace, and performing high-temperature treatment for 2 hours at 800 DEG C to prepare NGs (nitrogen-doped graphenes); and finally, ultrasonically dispersing the NGs into an aqueous solution, uniformly mixing the NGs with chloroplatinic acid according to a certain mass ratio, slowly adding sodium borohydride (NaBH4) into the mixed solution, and performing magnetic stirring for 8 hours to prepare the NGs loaded platinum nano-particle catalyst (Pt/NGs) which takes the NGs as a catalyst carrier to uniformly load platinum nano-particles to the surfaces of the NGs without any chemical modification. The nitrogen atoms which are doped into molecular structures of GNs not only provide a large amount of active sites for PtNPs loading, but also enhance the interaction between the PtNPs and an NGs carrier and improve the catalytic stability and catalytic activity of a nano composite material.
Owner:NANCHANG UNIV

Method for preparing load type nano arsenic-removing sorbent for drinking water

The invention relates to the elimination of the arsenic in drinking water, in particular to a preparation method of a supported type nano-adsorbent for removing arsenic from drinking water; the method includes the following steps: (1) activated carbon material with pore volume of 0.100-0.500cm<3> / g is selected for pretreatment; (2) soluble ferric salt solution is firstly used for soaking the activated carbon for 10-120 min; (3) alcoholic solution is taken as a dispersant to be added into the ferric salt solution; (4) under the protection of inert gases at room temperature, a strong reductant, potassium borohydride or sodium borohydride, is used for titrating the ferric salt, and agitation is carried out under the protection of inert gases; after the titration of potassium borohydride or sodium borohydride solution, agitation lasts for 10-120 min; (5) after agitation, centrifugation is carried out; oxygen-free water is firstly used for washing for 1-3 times, then organic solvent is adopted for washing for 1-3 times, and vacuum drying is done at 40-100 DEG C for 12-48h to obtain the product. The adsorbent of the invention has large adsorption capacity and small volume and is safe, stable and easy to store and transport.
Owner:SHENYANG INST OF APPL ECOLOGY CHINESE ACAD OF SCI

Dual-emission ratio-type quantum dot fluorescence probe, preparation method and application thereof

The invention relates to a dual-emission ratio-type quantum dot fluorescence probe for visual detection of aspirin, a preparation method and an application thereof and belongs to the technical field of preparation of material and detection of content of medicines. The preparation method of the probe includes following steps: preparing a precursor NaHTe solution from sodium borohydride, tellurium powder and water under an ultrasonic environment; adding the precursor to an aqueous solution of CdCl2.2.5H2O in the presence of thioglycollic acid; carrying out a reflux reaction with a nitrogen protecting condition to obtain required green fluorescence quantum dot and red fluorescence quantum dot; by means of a sol-gel method, wrapping the red fluorescence quantum dot with silicon spheres with amino group being connected; dispersing a green fluorescence quantum dot solution and the red fluorescence quantum dot wrapped with the silicon spheres in an MES buffer solution with addition of an EDC/NHS solution; and carrying out a reaction at room temperature in a dark place to obtain the dual-emission ratio-type quantum dot fluorescence probe. The dual-emission ratio-type quantum dot fluorescence probe is used in detection of the content of the aspirin through fluorescence quantitation and visualized analysis. The quantum dot fluorescence probe is quite good in optical performance and stability and has a capability of visualizedly detecting the aspirin.
Owner:JIANGSU UNIV

Nano-silver loaded graphene antibacterial agent and graphene in-situ reduction nano-silver loaded water-based antibacterial coating

The invention discloses a nano-silver loaded graphene antibacterial agent, a graphene in-situ reduction nano-silver loaded water-based antibacterial coating, and a preparation method of coating. The nano-silver loaded graphene antibacterial agent is prepared from the following components: graphene oxide, silver nitrate, polyvinylpyrrolidone and sodium borohydride. The graphene in-situ reduction nano-silver loaded water-based antibacterial coating o is prepared from the following raw materials in parts by weight: 25-35 parts of water, 30-40 parts of acrylic resin, 20-30 parts of polyurethane resin, 2-3 parts of the nano-silver loaded graphene antibacterial agent, 1.5-2.5 parts of a dispersant, 1-1.5 parts of a curing agent, 0.8-1 part of a defoamer, 0.5-0.8 part of film formation aid and 0.5-0.8 part of levelling agent. Under the combined action of graphene and nano-silver, the antibacterial efficiency, the antibacterial time and the antibacterial property of the coating can be greatlyimproved; the coating is excellent in antibacterial effect, long in antibacterial time, free of toxicity, free of pollution, high in water resistance and weather resistance, and high in adhesion; thenano-silver is loaded in graphene in situ, is incapable of settling, and can be uniformly dispersed in emulsion.
Owner:福建宸琦新材料科技有限公司

Preparation method of ultrafine platinum nano-wire

The invention relates to a preparation method of an ultrafine platinum nano-wire. The method mainly comprises that an insulin fiber suspension is obtained by dissolving bovine insulin powders into a hydrochloric acid solution with the concentration of 10-25 mM to prepare an insulin hydrochloric acid solution, blending the insulin hydrochloric acid solution with vortexes, and heating the blended insulin hydrochloric acid solution for 5-20 h in a constant-temperature metal bath at the temperature of 65-70 DEG C; and that the ultrafine platinum nano-wire is obtained by adding a chloroplatinic acid solution into the above insulin fiber suspension, fully blending the mixture, incubating the mixture for 10-20 h in a shaking table at the temperature of 4-10 DEG C and with the rotating speed of 50-100 r / min, dropwise adding a sodium borohydride reductant solution with a concentration of 5-10 mM into the mixture, and vibrating the mixture for 8-24 h in a shaking table at the temperature of 4-10 DEG C and with the rotating speed of 50-100 r / min to make the mixture fully reacted. The method of the invention has the advantages of a simple process, mild reaction conditions, and good repeatability, and is environment protective and highly efficient. With the method, appearance of the platinum nano-wire has no obvious changes while output of the nano-wire increases substantially. Thus, the nano-wire is provided with higher aspect ratio and simpler regulation and control method of output, thereby being easier to realize large-scale production.
Owner:YANSHAN UNIV

Preparation method of nanometer low-silver-content back silver conductor paste for crystalline silicon solar application

The invention discloses a preparation method of nanometer low-silver-content back silver conductor paste for crystalline silicon solar application. The method comprises the following steps of silver powder preparation, organic carrier preparation and nanometer silver conductor paste preparation. In silver powder preparation, a saturated silver nitrate and PVA mixed solution is added dropwise into a sodium borohydride solution, then water bath stirring is conducted, centrifugation, alcohol washing and low-temperature negative-pressure drying are conducted, and then silver powder with the grain size being 1 nm-100 nm can be obtained. According to the preparation method, the self-made nanometer silver powder is used for replacing micro-sized silver powder in existing back silver conductor paste, so that the conductive performance, the printing performance and the crystalline silicon substrate adhesion performance of the paste are changed, and application of the back silver conductor paste in crystalline silicon solar energy is greatly expanded; in addition, according to the method, the adding amount of the silver powder is greatly reduced, existing paste production equipment is used in the preparation process, extra new investment is not needed, environment protection is facilitated, and use of the precious metal silver is reduced.
Owner:陕西彩虹新材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products