Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

771results about How to "Meet the requirements of green chemistry" patented technology

Method for preparing manganese molybdate/cobalt molybdate hierarchical heterostructure nanowires

The invention discloses a method for preparing manganese molybdate / cobalt molybdate hierarchical heterostructure nanowires. The method comprises the following steps of: preparing a NaMoO4 aqueous solution and a MnCl2aqueous solution; proportioning in a certain ratio of the NaMoO4aqueous solution to the MnCl2 aqueous solution to CTAB (Cetyltrimethyl Ammonium Bromide) to n-butyl alcohol to isooctane and preparing manganese molybdate nanorods by using a microemulsion method; adding the manganese molybdate nanorods into distilled water, stirring and ultrasonically cleaning to obtain transparent liquid; and adding the liquid into a flask, placing the flask in an oil bath of between 60 and 80 DEG C, condensing and refluxing, adding a CoCl2 solution and a Na2MoO4 solution with different concentrations in turn every certain time, stirring to react so as to obtain a product, separating and drying the product to obtain the manganese molybdate / cobalt molybdate hierarchical heterostructure nanowires, wherein the lengths of the nanowires reach 10 microns and the diameters of the nanowires are between 500 and 1,000nm; the manganese molybdate nanorods in the hierarchical heterostructure nanowires are used as a main material and the diameters of the manganese molybdate nanorods are between 300 and 500; and the cobalt molybdate is branch nanorods which orderly grow on the surfaces of the manganese molybdate nanorods and the diameters of the cobalt molybdate nanorods are between 30 and 50nm. The material has excellent electrochemical performance and can be used as an active material for electrodes of electrochemical super capacitors. The method has the advantages of low-cost raw materials, simple process and environmental friendliness.
Owner:武汉经开科创运营有限公司

Mesoporous nanosheet structure ferronickel selenide material and preparing method and application thereof

The invention relates to a mesoporous nanosheet structure ferronickel selenide material supported on carbon fiber cloth and a preparing method. The mesoporous nanosheet structure ferronickel selenide material can serve as a brine electrolysis catalytic oxygen evolution active material, ferronickel selenide mesoporous nanosheets are staggered and linked on carbon nanofibers to form a three-dimensional network structure, the ferronickel selenide mesoporous nanosheets are 1-3 micrometers long and 25-45 nanometers thick, and the diameter of the carbon nanofibers is 10-13 micrometers. The mesoporous nanosheet structure ferronickel selenide material has the advantages that the mesoporous nanosheet structure ferronickel selenide material supported on the carbon fiber cloth and serving as an oxygen evolution electrode has excellent catalytic activity and stability and is a potential application material for a high-catalytic-performance brine electrolysis catalytic oxygen evolution catalyst. The reaction conditions are mild, based on the unique advantages of a mesoporous structure and selenide, a controllable secondary hydrothermal method is adopted, and by changing the hydrothermal time, the mesoporous material supported on the carbon fiber cloth is prepared and meets the requirement of green chemistry; the requirement for equipment is low, which is beneficial for marketization popularization.
Owner:WUHAN UNIV OF TECH

Sodion-embedded manganese dioxide nanometer sheet electrode as well as preparation method and application of electrode

The invention relates to a sodion-embedded manganese dioxide nanometer sheet electrode as well as a preparation method and an application of the electrode. The electrode can be used as the active material of a supercapacitor and comprises sodion-embedded manganese dioxide nanometer sheets evenly distributed on the surface of a foamed nickel substrate. The preparation method comprises the following steps of: (1) mixing sodium sulfate and manganese acetate to prepare an electrochemical deposition precursor solution; (2) setting up an electrochemical deposition platform through a three-electrode method and taking the foamed nickel substrate after pretreatment as a working electrode, a platinum electrode as a counter electrode and a saturated calomel electrode as a reference electrode; (3) soaking the electrodes in the electrochemical deposition precursor solution at same depth; (4) opening an electrochemical workstation, setting the working electrode to the anode, setting the working mode to a timing potential mode, and starting up the electrochemical workstation; (5) taking out and washing the working electrode after the electrochemical workstation stops working; and (6) drying to obtain the sodion-embedded manganese dioxide nanometer sheet electrode. The sodion-embedded manganese dioxide nanometer film electrode as well as the preparation method and the application of the electrode disclosed by the invention have the characteristics of simple technique, mild reaction condition and excellent electrochemical performance of materials.
Owner:WUHAN UNIV OF TECH

Graphene curled molybdenum trioxide nano-ribbons, and preparation method and application thereof

The invention relates to graphene curled molybdenum trioxide nano-ribbons, and a preparation method and an application thereof. The nano-ribbons can be used as a lithium ion battery positive electrode material. The method comprises the steps that: (1) a molybdenum sol is prepared, wherein excessive hydrogen peroxide solution is weighed and placed into a beaker; molybdenum powder is slowly added into the hydrogen peroxide, wherein the entire process is carried out under a cold water bath; when the molybdenum powder is completely added, the materials are stirred, such that molybdenum sol is obtained; (2) a graphene dispersion prepared with a Hummer method and the molybdenum sol prepared in the step (1) are weighed and are stirred under water bath; the mixture is transferred to a reaction kettle, and is subjected to a hydrothermal reaction in a thermostat; the material is naturally cooled to room temperature; (3) the product obtained in the step (2) is washed by using anhydrous ethanol, and is dried in a drying oven. The nano-ribbons and the method have the advantages that: when the material is adopted as a lithium ion battery positive electrode material, excellent rate performance, high specific capacity, and good circulation stability are shown. The process is simple and economical.
Owner:WUHAN UNIV OF TECH

Electrolyte for lithium secondary battery and lithium-oxygen secondary battery

The invention provides an electrolyte for a lithium secondary battery, the electrolyte includes a material which can be reacted with a corrosion matter on the surface of a negative electrode of the lithium secondary battery to form a silicon-containing protection layer, and the lithium secondary battery includes a lithium-oxygen secondary battery or a lithium-sulfur battery. According to the characteristic that corrosion matter lithium hydroxide is formed inevitably on the lithium surface of the lithium secondary battery of the opening system, a silicate material and / or silane material are / is added in the electrolyte, and the silicate material and / or the silane material are / is easy to react with the lithium hydroxide to form a silicon-containing protection film, further erosion of the lithium negative electrode can be effectively prevented, and with the charge and discharge, silicate / silane in the electrolyte can dynamically repair of the protective film, namely, growth of the protection film is continued on the corroded lithium surface, in the circulating charge and discharge process, the lithium negative electrode can be dynamically protected in real time in situ, the effect is better, the protective layer is more compact, metal lithium corrosion can be effectively reduced, and the metal lithium reversibility can be significantly improved.
Owner:CHANGCHUN INST OF APPLIED CHEMISTRY - CHINESE ACAD OF SCI

Vanadium oxide ultra-thin nanobelt with embedded ions and preparation method and application thereof

The invention relates to a vanadium oxide ultra-thin nanobelt with embedded ions and a preparation method thereof. The vanadium oxide ultra-thin nanobelt can be used as positive electrode active materials, with good rate capability, of a sodium-ion battery, metal ions are embedded into crystal layer-shaped structural layers of vanadium oxide, the interlayer spacing is controlled to range from 9.6 angstroms to 10.9 angstroms, the length of the vanadium oxide ultra-thin nanobelt ranges from 10 microns to 100 microns, the width of the vanadium oxide ultra-thin nanobelt ranges from 0.5 micron to 3 microns, and the thickness of the vanadium oxide ultra-thin nanobelt ranges from 5 nanometers to 20 nanometers. The vanadium oxide ultra-thin nanobelt with the embedded ions and the preparation method thereof have the advantages that based on the synergistic effect between the ultra-thin nanobelt structure and the metal ions embedded into the crystal structural layers, the vanadium oxide ultra-thin nanobelt material with the embedded ions is synthesized through the hydrothermal process and the freeze drying and vacuum drying processes; when the vanadium oxide ultra-thin nanobelt with the embedded ions is used as the positive electrode active materials of the sodium-ion battery, the excellent cycling property and high-rate capability of the nano material are achieved, and the vanadium oxide ultra-thin nanobelt with the embedded ions is a high-performance potential application material for the sodium-ion battery; the technology is simple, the requirements of green chemistry are met, and the requirement for equipment is low.
Owner:WUHAN UNIV OF TECH

Prussian blue flower-like nano-structure material as well as preparation and application thereof

The invention relates to a preparation method of a Prussian blue flower-like nano-structure electrode material. The preparation method comprises the following steps: 1) firstly, dissolving nickel chloride hexahydrate and anhydrous sodium citrate into de-ionized water; 2) dissolving sodium ferrocyanide decahydrate into de-ionized water; 3) pouring a solution of step 2) into a mixed solution obtained by step 1) and uniformly stirring to obtain a mixed solution; 4) standing the mixed solution obtained by step 3); 5) centrifuging and collecting sediment; washing the sediment for several times; drying in vacuum to obtain Prussian blue precursor powder; 6) adding the precursor powder into a sodium hydroxide solution and carrying out ultrasonic treatment; 7) centrifuging and collecting a product and washing; drying in vacuum to obtain light green powder, namely the Prussian blue flower-like nano-structure electrode material. The preparation method provided by the invention has the beneficial effects that the specific surface area is remarkably enlarged so that reaction sites of electrolyte and the electrode material are effectively increased and an ion diffusion distance is reduced; when the Prussian blue flower-like nano-structure electrode material is used as a positive electrode active material of a sodium ion battery, the material has the characteristics of high power and good cycling stability.
Owner:WUHAN UNIV OF TECH

Gold-sliver alloy two-dimensional ordered nano film prepared by in-situ interface transformation and method for preparing gold-sliver alloy two-dimensional ordered nano film

The invention relates to a gold-sliver alloy two-dimensional ordered nano film prepared by in-situ interface transformation and a method for preparing the gold-sliver alloy two-dimensional ordered nano film. The method adopting a two-step transformation process comprises the following steps: by taking a single-layer polystyrene sphere self-assembled film as a template, preparing a polystyrene-silver nano net film with a controllable thickness by a gas slow release method; transferring the polystyrene-silver nano net film to a solution surface of a chloroauric acid and disodium hydrogen phosphate solution, and obtaining the gold-sliver alloy two-dimensional ordered nano film by carrying out in-situ replacement reaction; and finally, soaking the gold-sliver alloy two-dimensional ordered nano film to remove the polystyrene template. The synthetic method has the advantages of being simple, quick, gentle and low in energy consumption, and meets the requirements of green chemistry; the smallest constitutional unit of the prepared gold-sliver alloy two-dimensional ordered nano net film is a hollow gold-sliver alloy nano particle; and the film has the advantages of being great in specific surface area, good in permeability, low in density and the like, can be loaded on substrates of different types, has the advantages of being convenient to recycle, and easy to enlarge a product, and can be widely applied to the fields of photoelectrocatalysis, biosensing, biological medicine carrying and the like.
Owner:TONGJI UNIV

Graphene-modified vanadium disulfide micrometer flower material, preparation method thereof and application of graphene-modified vanadium disulfide micrometer flower material as aluminum ion battery cathode material

The invention relates to a graphene-modified vanadium disulfide micrometer flower material and a preparation method thereof. The graphene-modified vanadium disulfide micrometer flower material can be used as an aluminum ion battery cathode active material, and has a micrometer flower laminated structure which is self assembled by vanadium disulfide nanometer sheets, wherein graphene is uniformly distributed in the micrometer flower laminated structure, an interlayer distance of the micrometer flower laminated structure is shown in the description, and the diameter of a micrometer flower is 1-1.5 microns. The graphene-modified vanadium disulfide micrometer flower material and the preparation method thereof have the beneficial effects that the novel laminated graphene-modified vanadium disulfide electrode material is prepared through a one-step hydrothermal method, expresses high specific capacity, good cycle performance and good coulombic efficiency by larger interlayer distance of the vanadium disulfide and uniform interlayer modification on graphene when being used as the aluminum ion battery cathode active material, and is a potential application material of an aluminum ion battery; and secondly, the preparation method has the advantages of simple process, short synthesis time and mild conditions, meets the requirement on green chemistry, and is beneficial to market popularization.
Owner:WUHAN UNIV OF TECH

Method for preparing methanol and ethanol by methyl acetate by way of hydrogenation

The invention relates to a method for preparing methanol and ethanol by methyl acetate by way of hydrogenation. The method comprises the following steps: mixing the methyl acetate with hydrogen, wherein the mixture enters into a reactor catalyst bed layer, and performing the hydrogenation reduction reaction under the effect of a catalyst, wherein the reaction temperature is 200-260 DEG C, and the reaction pressure is 1.8-3.0MPa; first, cooling the products generated by the hydrogenation reduction reaction and then, distilling to obtain methanol and ethanol. According to the method provided by the invention, methyl acetate with the purity of byproduct of 50-99% for preparing polyvinyl alcohol is directly used as a raw material, so that the method is low in production cost. The catalyst is adopted for hydrogenation reaction on methyl acetate, so that the efficiency is high and the selectivity is high. After reaction, the product does not contain water, and methanol and ethanol can be separated through simple distillation, so that the reaction percent conversion and the product quality are improved. The catalyst is long in service life, and matters obtained by distillation can be used for the next reaction. Mechanical circulation is realized, and the demand of greenness and environment-friendliness is realized.
Owner:LINHAI LIANSHENG CHEM

Preparation method of silver-loaded nano cellulose-chitosan composite film

The invention discloses a preparation method of a silver-loaded nano cellulose-chitosan composite film, the preparation method of the silver-loaded nano cellulose-chitosan composite film comprises the following steps: adding sodium periodate into a nano cellulose solution, stirring in a dark place, centrifuging for separation, and washing to obtain dialdehydo nano cellulose; adding a newly-prepared saturated silver ammonia solution for preparation of silver-loaded nano cellulose; mixing the silver-loaded nano cellulose with a chitosan solution to obtain a silver-loaded nano cellulose-chitosan antibacterial film. Nano silver particles prepared in the method are evenly distributed in dialdehydo nano cellulose network structures, the easy agglomeration problem of the nano silver particles can be well solved, the preparation process does not require the use of special instruments, also does not need a chemical reducing agent, and the production cost is reduced. Through use of good mechanical properties of the nano cellulose, the low mechanical strength problem of the chitosan film is improved, and the antibacterial property of the chitosan film is improved by silver loading operation. The silver-loaded nano cellulose-chitosan composite film has broad application prospects in antibacterial wound dressings and food packaging and other industries.
Owner:QIQIHAR UNIVERSITY +1

Potassium ion embedded type vanadium pentoxide nanowire and preparation method thereof and application thereof

The invention relates to a potassium ion embedded type vanadium pentoxide nanowire and a preparation method thereof. The preparation method includes 1), weighing V205 to add into deionized water, adding a KOH (potassium hydroxide) water solution and stirring to obtain a water solution; 2), transferring the water solution into a reaction still, heating the water solution, and obtaining deep green products after the water solution is taken out; 3), performing centrifugal separation, washing the deep green products by a mixed solution mixing with absolute ethyl alcohol and deionized water, and then placing the deep green products in a dryer to dry; 4), putting the deep green products in a muffle furnace to have a heat treatment to obtain yellow green samples; and 5), washing the yellow green samples in step 4 with the mixed solution mixing with the absolute ethyl alcohol and the deionized water, putting the yellow green samples in the dryer to dry to obtain the potassium ion embedded type vanadium pentoxide nanowire. The potassium ion embedded type vanadium pentoxide nanowire has the advantages that the nanowire has high specific capacity, good cycling stability and excellent rate capability, and is a potential high-performance commercial lithium ion battery anode material.
Owner:安徽国芯新材料股份有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products