Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

112results about How to "Controllable pore structure" patented technology

Method for preparing nitrogen-doped porous carbon by taking cottonseed hull as raw material and application

InactiveCN108455597AWide range of resource sourcesLow costCarbon preparation/purificationCapacitancePorous carbon
The invention discloses a method for preparing nitrogen-doped porous carbon by taking cottonseed hull as a raw material and application. The method is characterized in that the nitrogen-doped porous carbon material is prepared by taking the cottonseed hull as a raw material and urea as a nitrogen source, stirring and uniformly mixing the substances with a sodium hydroxide solution, and then carrying out high-temperature carbonization and activation. An electron microscope photo shows that the prepared nitrogen-doped porous carbon material is of a three-dimensional inner cross-linking network structure. XPS and elemental analysis show that the nitrogen element is successively and uniformly doped in a carbon matrix; the XPS analysis shows that the nitrogen content is 1.84 to 7.35%; the elemental analysis shows that the nitrogen content is 2.07 to 6.52 % and the specific surface area is 1010 to 2500m<2> / g. The super-capacitor experiment shows that the prepared nitrogen-doped porous carbonmaterial has good electrochemical properties and the specific capacitance can reach 320 to 340F / g (current density is 0.5A / g). The method has the advantages of simplicity in preparation, wide range of renewable resources as raw materials, low price, low cost, easiness in large-scale industrialization application and capability of being applied to the field of energy storage.
Owner:XINJIANG TECHN INST OF PHYSICS & CHEM CHINESE ACAD OF SCI

Bioactive porous hybrid carbon nanofiber material and preparation method thereof

The invention provides a bioactive porous hybrid carbon nanofiber material and a preparation method thereof, and belongs to the technical field of biological composite materials. The bioactive porous hybrid carbon nanofiber material is prepared by virtue of a process comprising the steps of evenly mixing a precursor sol-gel liquid of a bioactive substance, polyacrylonitrile, a pore-foaming agent and an organic solvent together under the conditions of heating in a water bath and ultrasonics, aging to obtain a spinning solution, forming a primary nanofiber film by virtue of an electrostatic spinning process, and then carrying out hot-stretching, pre-oxidating in heating stage by stage and carbonizing, and a preparation method of the bioactive porous hybrid carbon nanofiber material. Due to the bioactive nanoparticles existing on the surface of the material, the material has biocompatibility, bioactivity and biodegradability; due to existing regular-structure nano-scale pores, the material has the relatively high specific surface area, and therefore, the biological properties of the material are greatly improved. As a result, the bioactive porous hybrid carbon nanofiber material can be further used as a novel bone repair material or a bone tissue scaffold reinforcing material.
Owner:BEIJING UNIV OF CHEM TECH

Method for preparing porous carbon material from aluminum electrolysis waste cathode carbon

The invention discloses a method for preparing a porous carbon material from aluminum electrolysis waste cathode carbon, wherein aluminum electrolysis waste cathode carbon is used as a raw material, and the purposes of fluorine fixation and etching are mainly realized through auxiliary treatment and reactant reaction, so that easy-to-separate porous carbon is obtained. According to the invention,soluble fluorine ions in waste cathode carbon are cured by utilizing calcium ions or magnesium ions in a calcium agent or a magnesium agent, oxygen ions and hydroxyl ions in the calcium agent or the magnesium agent are combined with sodium ions, potassium ions and lithium ions to form oxides and hydroxides with high etching property, so that in-situ hole etching is realized; water vapor generatedby auxiliary treatment or high-temperature decomposition of the calcium agent and the magnesium agent can react with insoluble aluminum fluoride and cryolite to generate hydrogen fluoride and aluminumoxide, so that the content of insoluble fluoride in the carbon is reduced; and air in auxiliary treatment can improve the etching property of a carbon skeleton, increase the wettability of a carbon interface and improve the separability of impurities, so that the content of the impurities in the carbon material is reduced.
Owner:ZHENGZHOU UNIV

Preparation method of porous nickel titanium shape memory alloy

The invention provides a preparation method of a porous nickel titanium shape memory alloy, which comprises the following steps: determining volume V total porosity of the obtained porous nickel titanium shape memory alloy according to demands, calculating the mass m of every raw material according to the formula, weighing Ni powder, Ti powder and a pore forming agent, and mixing for 30-150 minutes; carrying out discharge plasma sintering at 750-1100 DEG C for 8-30 minutes to obtain a sintered body; and after cooling to room temperature, infusing with water for 30-180 minutes until the pore forming agent is completely dissolved or reacted, thereby obtaining the porous nickel titanium shape memory alloy. The porosity and pore size are controlled through and volume percent, and the reinforced sintering action of SPS and the removal of the soluble salt pore forming agent are utilized to implement the preparation of the controllable-pore-structure porous nickel titanium shape memory alloy. The porosity of the porous nickel titanium shape memory alloy is 40-70%, and the pore size is 75-1000 mu m. The porous nickel titanium shape memory alloy has the characteristics of low cost, controllable pore structure, and simple, stable and efficient technique, and can implement industrial production.
Owner:KUNMING UNIV OF SCI & TECH

Vacuum foaming preparation method of blister steel

The invention provides a vacuum foaming preparation method of blister steel and belongs to the technical field of a foam metal material. The vacuum foaming preparation method comprises the following steps of: carrying out steel smelting, tackifying a steel melt, generating initial air pores in the steel melt, foaming in vacuum, and cooling a blister steel melt to finally obtain the blister steel with the porosity of 70-85% and the pore diameter of 0.5-5mm. According to the vacuum foaming preparation method disclosed by the invention, SiC is used as a tackifier to carry out tackifying treatment on the steel melt; and a small amount of Cr2N is added into the steel melt tackified by the SiC, and gas is generated by agitating and dispersing the Gr2N and decomposing the Gr2N, so that the initial air pores which are uniformly distributed, great in quantity and fine are generated in the steel melt, and the blister steel is prepared by foaming in the vacuum. The control of the distribution, the quantity, the size, the vacuum degree, the foaming time and the like of the generated initial air pores is carried out so as to control the porosity and the pore structure of the blister steel to prepare the blister steel with the excellent performance in short time. The vacuum foaming preparation method of the blister steel, disclosed by the invention, has the characteristics of high efficiency, simple process, controllable pore structure, stable process and the like, and can realize the industrial production.
Owner:KUNMING UNIV OF SCI & TECH

Light foam Mn-Cu alloy high-damping material and preparation method thereof

ActiveCN107460385AHigh dampingOvercome the densityPorosityBinary alloy
The invention discloses a light foam Mn-Cu alloy high-damping material. The light foam Mn-Cu alloy high-damping material is a binary alloy formed by metal manganese and copper or a multicomponent alloy formed by manganese, copper and one or more of iron, nickel and aluminum. A preparation method of the light foam Mn-Cu alloy high-damping material comprises the following steps of mixing Mn-Cu alloy particles and a foaming agent evenly; putting mixed powder into a mold and conducting cold-press molding to obtain a blank body for standby application; conducting hot-press molding on the blank body to obtain a high-compactness blank body with the density greater than 80%; putting the high-compactness blank body into the mold, conducting foaming and then cooling, and finally obtaining the foam Mn-Cu alloy high-damping material with the uniform aperture. By means of the light foam Mn-Cu alloy high-damping material and the preparation method thereof, the defect that the density of a traditional high-damping Mn-Cu alloy is large is overcome; the damping property of the Mn-Cu alloy is effectively improved through the porosity and the high-density defect around cavities. Besides, by means of the method, the problems that the foaming temperature is high, the size distribution of pores is non-uniform and the technological operation is difficult are solved.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Core cell structure, core with porous structure and sandwich energy absorption structure

The invention discloses a core cell structure. The core cell structure comprises an outer layer and an inner layer, wherein both the outer layer and the inner layer are three-period minimal curved surfaces; a cavity is formed between the outer layer and the inner layer; a connecting plate for connecting the outer layer with the inner layer is arranged in the cavity; an upper opening and a lower opening which extend to the outside of the cavity and are opposite to each other are formed in each of the outer layer and the inner layer; and a plurality of lateral openings which extend to the outside of the cavity are formed in the peripheral side of each of the outer layer and the inner layer. The invention also discloses a core with a porous structure. The core with the porous structure comprises the core cell structures, wherein the adjacent core cell structures are in butt joint with each other through the corresponding opening, and the outer layers and the inner layers of the core cellstructures form a continuous curved surface. The invention also discloses a sandwich energy absorption structure which comprises a first interlayer, a second interlayer and the core with the porous structure, and the core with the porous structure is clamped between the first interlayer and the second interlayer. The core cell structure, the core with the porous structure and the sandwich energy absorption structure have the advantages of simple structure, high energy absorption efficiency and the like.
Owner:HUNAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products