Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

451results about How to "Reduced band gap" patented technology

Preparation and use methods of nitrogen-vanadium co-doped modified titanium dioxide catalyst

The invention discloses preparation and use methods of a nitrogen -vanadium co-doped modified titanium dioxide catalyst, belonging to the technical field of preparation and use of catalysts. The preparation method comprises the following steps of: adding a nitrogen source and a vanadium source in a process of preparing titanium dioxide by using a sol-gel method; hydrolyzing the mixture to obtain gelatin and standing, aging and drying to form particles; then grinding and carbonizing and heating to 600 to 800 DEG C for roasting to obtain a mixed crystal type titanium dioxide catalyst with different doping amounts. The compounding of electron-hole pair is influenced by doping metal ions to improve utilization ratios of visible light.With simple operation and easy control, the prepared nitrogen -vanadium co-doped modified titanium dioxide catalyst can achieve greatly improved visible light activity and can be applied to sulphuric acid production in the chemical engineering industry, SO2 tail gas treatment in the smelting industry, sulfur dioxide control of coal-fired and fuel boilers, acid rain prevention and control, smoke gas adjustment of coal-fired power plants, improvement on the dust removal efficiency of an electric precipitator, and other fields.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Preparation method of BiOCl nanometer photocatalyst, prepared photocatalyst, and application of prepared photocatalyst

The invention provides a preparation method of a BiOCl nanometer photocatalyst, the prepared photocatalyst, and application of the prepared photocatalyst. The method comprises the following steps: (1) dissolving bismuth nitrate and sodium carboxymethylcellulose into water, stirring evenly to obtain a bismuth containing mixed solution, wherein the mass ratio of the bismuth nitrate to the sodium carboxymethylcellulose is (0.3-5):1, the viscosity of the sodium carboxymethylcellulose is 200-500 mPas; (2) dropwise adding a chloride solution into the mixed solution obtained in the step (1), stirring evenly to obtain a bismuth containing precursor solution; (3) regulating the pH value of the bismuth containing precursor solution obtained in the step (2) to 5.0-6.5, stirring evenly to form a reactant; (4) enabling the reactant to react for 24-30 hours at the temperature of 150-160 DEG C to obtain a precipitate; (5) washing and drying the precipitate obtained in the step (4) to obtain a BiOCl powder. The provided preparation method is simple, green and pollution-free, the preparation cycle is short, the cost is low, and the property and the stability of the prepared photocatalyst are excellent.
Owner:WUHAN TEXTILE UNIV

Preparation of iron-doped nitrogen-doped nano titanium dioxide powder

The invention discloses a method for preparing iron-doped nitrogen-doped nanometer titanium dioxide powder. The preparation method comprises the steps of preparing titanium tetrachloride raw material to be hydrosol, aging the hydrosol, adding water for dilution, doping water-soluble iron salt, raising temperature to hydrolyze sol and produce precipitate, filtering the precipitate, using water to wash the precipitate, drying the precipitate, obtaining iron-doped nanometer titanium dioxide powder, mixing and then ball-milling nitrogen salt and the iron-doped nanometer titanium dioxide powder, calcining the ball-milled powder, and cooling the powder to obtain the iron-doped nitrogen-doped nanometer titanium dioxide powder. The preparation method combines a chemical method with a physical method so as to allow iron to uniformly enter a crystal lattice structure of titanium dioxide on the one hand, and to uniformly distribute nitrogen in surface layers of nanometer particles, particularly non-crystallization layers on the other hand. The iron-doped nitrogen-doped nanometer titanium dioxide powder can improve the photocatalysis efficiency of titanium dioxide on the one hand, and can expand the photoresponse wavelength of titanium dioxide so as to greatly improve photocatalysis properties.
Owner:ZHEJIANG UNIV OF TECH

Silver-doped zirconium dioxide photocatalyst, and preparation method and application thereof

The invention discloses a silver-doped zirconium dioxide photocatalyst which is mainly prepared from the following steps: 1) taking industrial-grade zirconium dioxide, putting in a muffle furnace, and carrying out high-temperature calcination to obtain an intermediate sample 1; 2) putting the intermediate sample 1 in a strongly alkaline solution, dropwisely adding a silver-ion-containing water solution while stirring, and continuing stirring to obtain an intermediate sample 2; 3) putting the intermediate sample 2 into a high-pressure autoclave, and carrying out hydrothermal reaction to obtain an intermediate sample 3; and 4) putting the intermediate sample 3 into a centrifuge tube, carrying out centrifuge washing until the pH value of the supernate is 7, and drying at normal temperature to obtain the silver-doped zirconium dioxide photocatalyst. The invention also discloses application of the silver-doped zirconium dioxide photocatalyst in photocatalytic water decomposition. The silver-doped zirconium dioxide photocatalyst fills up the blank in the silver-doped zirconium dioxide photocatalyst in the prior art, and has the advantages of uniform size, high photocatalytic water decomposition efficiency, simple preparation method and low production cost.
Owner:海宁经开产业园区开发建设有限公司

Li and Mn codoped manganese phosphate/carbon composite material and preparation method thereof

The invention relates to an Li and Mn codoped manganese phosphate/carbon composite material which is characterized in that a general formula of the Li and Mn codoped manganese phosphate/carbon composite material is Li[1-x]AxMn[1-y]ByPO4/C, wherein x is more than or equal to 0.01 and smaller than or equal to 0.15, y is more than or equal to 0.01 and smaller than or equal to 0.15, x is equal to y, and A and B are divalent metal ions. The preparation method comprises the following steps of firstly preparing nanoscale Mn[1-y]ByO from divalent manganese source and a compound containing metallic element B; preparing paste from a phosphorus source, a lithium source and a compound containing metallic element A and nanoscale Mn[1-y]ByO; and finally roasting the paste under the protection of argon or nitrogen, ball-milling, introducing C1-4 n-alkane gas at 400-600 DEG C to obtain the Li and Mn codoped manganese phosphate Li[1-x]AxMn[1-y]ByPO4/C. Through the Li and Mn codoping, the electrical conductivity in the material can be improved effectively, and the carbon layer covering the surfaces of particles is uniform and sufficient. The synthetic material has a relatively good discharge performance and cycling stability, the process is simple, the cost is low, and the material can meet the green chemistry development requirement.
Owner:广东省科学院资源利用与稀土开发研究所

External force triggered type response enhanced self-powered gas sensor and preparation method thereof

The invention discloses an external force triggered type response enhanced self-powered gas sensor and a preparation method thereof, and belongs to the technical field of sensors. The external force triggered type response enhanced self-powered gas sensor comprises a gas sensitive element, a friction nano power generating device, a detecting circuit, a rectifying device and an ultraviolet light source. An alternating signal output by the friction nano power generating device is converted into a unidirectional output signal by the rectifying device to be connected with an ultraviolet light source disposed directly facing the gas sensitive element and the gas sensitive element. A directional electric field is formed on the surface and the inside of a gas sensitive material, thereby promotingthe resolution of photogenerated carriers and suppressing the recombination of the photogenerated carriers, the quantum efficiency of the light enhancement is improved, and the gas sensitive effect under the ultraviolet radiation is enhanced. The external force triggered type response enhanced self-powered gas sensor not only has a novel structure, but also has a simple preparation process, low processing cost and high practicability, has great promotion to the development of gas sensors, and has great significance for the construction of gas sensor network nodes.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Rare earth elements co-doped indium sulfide material as well as preparation method and application thereof

The invention discloses a rare earth elements co-doped indium sulfide material as well as a preparation method and application thereof. The indium sulfide material is formed in a way that rare earth elements Yb and Tm are co-doped with indium sulfide. The preparation method comprises the following steps: dissolving an indium source, an ytterbium source, a thulium source and a sulfur source into water, so as to obtain mixed solution; performing a hydrothermal reaction on the obtained mixed solution; and performing washing and vacuum drying, so as to obtain the rare earth elements co-doped indium sulfide material. The rare earth elements co-doped indium sulfide material has the advantages of narrow energy gap, wide spectral response characteristic, and high photogenerated charge separation efficiency; and the preparation method has the advantages of being simple in process, strong in operability and low in production cost, being environment-friendly and pollution-free. When the rare earth elements co-doped indium sulfide material is used for treating heavy metal wastewater or dye wastewater, the indium sulfide material has the advantages of being short in reaction time in a treatmentprocess, high in utilization efficiency of solar energy, high in photocatalytic conversion efficiency, convenient in operation and the like, and therefore, the indium sulfide material can be widely applied to elimination of toxicity and harmless treatment for heavy metals and dyes in the wastewater and has great importance.
Owner:HUNAN UNIV

Two-dimensional titanium dioxide/graphene flaky modified self cleaning fabric and preparation method thereof

The invention provides a two-dimensional titanium dioxide / graphene flaky modified self cleaning fabric and a preparation method thereof. According to the method, a titanium source and a triblock copolymer F127 are added into a tetrahydrofuran solution; the pH is regulated to an acid state; continuous stirring is performed until the solvent is completely volatilized; titanium source precursor gel is obtained; the titanium source precursor gel is added into a polylol mixed solution; after the uniform mixing, an oxidized graphene solution is dripped; uniform mixing is performed; the materials aretransferred into a hydrothermal reaction kettle; hydrothermal reaction is performed; after the centrifugal separation and cleaning, a graphene modified two-dimensional titanium dioxide flaky materialis obtained; then, the graphene modified two-dimensional titanium dioxide flaky material is dispersed into a flexible substrate solvent; the material is applied or sprayed onto the surface of the fabric; drying is performed; then, through ethanol water vapor treatment, the two-dimensional titanium dioxide / graphene flaky modified self cleaning fabric is obtained. The graphene modified two-dimensional titanium dioxide flaky materials are uniformly distributed in the flexible substrate nanometer layer on the surface of the prepared fabric; the fabric has good ventilation performance, comfort performance and good self cleaning effect.
Owner:DONGGUAN LIANZHOU INTPROP OPERATION MANAGEMENT CO LTD

Method for preparing Al mixed with ZnO nanosheet array by adopting pulsed electromagnetic field

The invention relates to a method for preparing Al mixed with ZnO nanosheet array by adopting a pulsed electromagnetic field, which is as follows: an FTO conductive sheet glass is placed in an ultrasonic cleaner for cleaning; the mixed solution I of zinc acetate, ethanol amine and ethylene glycol monomethyl ether is dripped on the conductive sheet glass, and is uniformly coated through a spin coater and heat treated to form a ZnO film thereon; the FTO conductive sheet glass coated with the ZnO film is put into a reaction kettle, the mixed solution II formed by aluminium nitrate, zinc nitrate and hexamethylene tetramine as well as deionized water is filled into the reaction kettle, the pulsed electromagnetic field treatment is applied to the reaction system in the reaction kettle, the kettle is moved to a constant temperature oven for hydrothermal reaction after the treatment, and the sediment on the surface of the glass is washed and dried after the hydrothermal reaction, so as to obtain the Al mixed with ZnO nanosheet array. The method is simple to operate, has low energy consumption, enables the orientation of the nanosheets to be identical, has higher verticality, enables the nanosheets to be neatly arrayed, has big specific surface area, facilitates electron transport when serving as the photoanode, and improves the efficiency of the dye sensitized solar cell.
Owner:LIAONING UNIVERSITY OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products