Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

411 results about "Germanium dioxide" patented technology

Germanium dioxide, also called germanium oxide, germania, and salt of germanium, is an inorganic compound with the chemical formula GeO₂. It is the main commercial source of germanium. It also forms as a passivation layer on pure germanium in contact with atmospheric oxygen.

Method for recovering germanium from flyash by wet process

The invention relates to a method for recovering germanium from flyash by a wet process, belonging to the technical field of wet-process metallurgy. The method comprises the following steps of: (1) crushing flyash to more than 200 meshes by a wet process; (2) carrying out oxidizing leaching twice on wet flyash by using a sulfuric acid solution, sodium chlorate and ammonium fluoride; (3) crushing the flyash to 200-400 meshes for a second time; (4) leaching 3 or 4 times by using the same condition as that of the first leaching; (5) regulating the pH value of the first leached liquid to 2-2.5 by using ammonia water, and then precipitating and leaching out germanium in the liquid by using tannin with a weight percentage content of 80-99 percent; (6) drying and roasting the germanium precipitate to prepare a germanium concentrate; distilling the germanium concentrate with hydrochloric acid by using a conventional method to obtain germanium tetrachloride; and redistilling, rectifying, purifying and hydrolyzing to obtain high-purity germanium dioxide. The invention is used for flyash after recovering germanium by a fire process, sufficiently utilizes rare germanium metal, reduces the pollution of tailings to the environment, and has the advantages of low cost and high recovery rate.
Owner:JIUJIANG BAIDUN VANADIUM TECH TRADING

Universal, glycosylation enhancer, completely chemically defined medium formulation

In one embodiment, the present application discloses a cell culture medium for culturing cell lines suitable for producing a therapeutic protein, comprising an amino acid selected from a group consisting of L-arginine, L-asparagine, L-proline, L leucine and L hydroxyproline and a mixture thereof; a vitamin selected from a group consisting of ascorbic acid Mg2+ salt, biotin, pyridoxine HCL, folic acid, riboflavin and D-calcium pantothenate, and a mixture thereof; an element selected from a group consisting of ammonium meta vanadate, sodium meta vanadate, germanium dioxide, barium acetate, aluminum chloride, rubidium chloride, cadmium chloride, ammonium molybedate, stannous chloride, cobalt chloride, chromium sulfate, silver nitrate, sodium metasilicate, zinc sulfate, manganese sulfate H2O, manganous chloride, ferric nitrate 9H2O, ferrous sulfate 7H2O, ferric ammonium citrate, magnesium chloride anhydrous, and magnesium sulfate anhydrous, and a mixture thereof; a nucleoside selected from a group consisting of uridine and cystidine; a sugar selected from a group consisting of galactose, mannose and N-Acetyl-D-Mannosamine; and a triple buffering system comprising sodium carbonate, sodium bicarbonate and HEPES; wherein the cell culture medium is animal component-free, plant component-free, serum-free, growth factors-free, recombinant protein-free, lipid-free, steroid-free, and free of plant or animal hydrolysates and/or extracts.
Owner:NANOGEN PHARMA BIOTECH CO LTD

Calcium germinate nanowire and preparation method thereof

The invention provides a calcium germinate nanowire and a preparation method thereof, and belongs to the technical field of nano material preparation. The calcium germinate nanowire provided by the invention is prepared from monocrystalline calcium germinate with the diameter of between 20 to 100nm and the length of more than 100 mu m. In the preparation method, different calcium sources and germanium dioxide are taken as raw materials, and water is taken as a solvent, wherein the calcium sources are calcium acetate, calcium chloride or nitrate of lime; a molar ratio of calcium to germanium in the raw materials is 2:1; the preparation method comprises the following steps of: putting the germanium dioxide and the calcium-containing raw material into a stirrer, and adding the water and stirring; and placing mixed solution obtained after stirring into a sealed container, and then preserving the heat for 1 to 24 hours at the temperature of between 100 and 200 DEG C to obtain a white fluffy product, namely the calcium germinate nanowire. In the invention, the nontoxic germanium dioxide and the different calcium sources are used, and the water is taken as the solvent, so that the raw materials and the preparation process do not pollute the environment, and the preparation method accords with a development direction of the modern industry with the environmental-friendly requirement, and can realize environmental-friendly mass preparation for the calcium germinate nanowire.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY

Preparation method of rare earth ion doped tungsten oxygen fluoride silicate up-converted luminescent glass

The invention discloses a preparation method of rare earth ion doped tungsten oxygen fluoride silicate up-converted luminescent glass. The preparation method comprises the steps of: firstly, uniformly mixing silicon dioxide, germanium dioxide, aluminum oxide, tungsten oxide, calcium fluoride, titanium dioxide and rare earth oxide in a mortar; and then preparing the Er<3+>-Yb<3+> rare earth ions doped tungsten oxygen fluoride silicate up-converted luminescent glass by adopting a high-temperature melting annealing method. The method disclosed by the invention is simple in preparation method, low in raw material cost and simple in required device without a special device; and the overall preparation process is carried out in air atmosphere. According to the invention, tungsten oxide is introduced into an oxygen fluoride silicate glass substrate for the first time, and the further solution of the problems that the oxygen fluoride silicate glass is poor in chemical stability and mechanical strength after tungsten oxide is introduced is facilitated, so that the glass product has the advantages of low phonon energy of fluoride and good crystallization stability of oxide, thereby obtaining strong up-converted red and green light output visible to naked eyes.
Owner:ZHEJIANG UNIV

Germanium-graphene composite cathode material for lithium ion battery and preparation method thereof

The invention discloses a germanium-graphene composite cathode material for a lithium ion battery and a preparation method of the germanium-graphene composite cathode material. The composite cathode material is prepared from germanium particles and grapheme through compounding, wherein the nano germanium particles are uniformly distributed in a grapheme sheet layer to form a grapheme network cladded three-dimensional net structure. The preparation method comprises the following steps: (1) stirring and dispersing; (2) carrying out microwave hydrothermal; and (3) washing, drying and collecting. According to the germanium-graphene composite cathode material for the lithium ion battery and the preparation method of the germanium-graphene composite cathode material, germanium and germanium dioxide are re-crystallized and grow on the graphene in situ, the bonding strength of the germanium and the grapheme is higher than that of germanium-graphene composite material obtained through mixing simply, the electrical conductivity of the grapheme network is fully exerted, and the volume effect of the germanium is effectively inhibited. The germanium-graphene composite cathode material for the lithium ion battery has the characteristics of high capacity, high magnification and excellent cycling stability, the preparation process adopts simple and effective microwave hydrothermal reaction, the process is simple, the energy consumption is low, the yield is high, no pollution is caused, the germanium-graphene composite cathode material can be promoted and applied conveniently and is suitable for large-scale production.
Owner:东莞市翔丰华电池材料有限公司

Method for recycling germanium from germanium-containing glass

The invention discloses a method for recycling germanium from germanium-containing glass, which comprises the following steps: 1) pulverizing germanium-containing glass into germanium-containing glass powder, adding an alkali solution into the germanium-containing glass powder, heating to 120-300 DEG C, and keeping the temperature for 1-10 hours to obtain a water solution containing sodium silicate and sodium germanate; 2) adding an alkali metal salt into the water solution containing sodium silicate and sodium germanate obtained in the step 1), regulating the pH value to 6-9, aging, carrying out solid-liquid separation, drying the solid to obtain amorphous silicon dioxide, and recycling; 3) adding magnesium chloride into the solution obtained by solid-liquid separation in the step 2) to obtain a precipitate containing magnesium germanate; and 4) mixing the precipitate containing magnesium germanate with hydrochloric acid, carrying out chlorination distillation, condensing to collect germanium tetrachloride, and hydrolyzing the germanium tetrachloride to obtain germanium dioxide. The method abandons the pyrogenic process for recycling high-silicon germanium-containing waste, lowers the energy consumption, reduces the environmental pollution, and has the advantages of simple technique, high germanium recycling rate and low recycling cost.
Owner:湖北拓材再生资源有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products