Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

873results about How to "Synthetic conditions are mild" patented technology

Preparation method for nano-zinc oxide modified graphene hybrid material

The invention discloses a preparation method for a nano-zinc oxide modified graphene hybrid material. The method includes: preparing a graphene oxide suspension solution; dissolving a zinc salt in water, adding the solution into the graphene oxide suspension solution, conducting ultrasonic treatment, adding an alkali reagent dropwise to obtain a zinc hydroxide graphene oxide suspension solution; under ultraviolet light irradiation, performing static aging to obtain a zinc hydroxide-graphene oxide gel, adding an excessive reducing agent, carrying out reaction, using water and ethanol to conduct repeated washing, and performing drying to obtain a zinc hydroxide-graphene dry gel; placing the gel in a muffle furnace, and conducting treatment at high temperature to obtain the gray nano-zinc oxide modified graphene hybrid material. The nano-zinc oxide obtained by the invention has a large specific surface area, can effectively promote vulcanization crosslinking, greatly reduces the using amount of zinc oxide, and is of great importance to full utilization of zinc resources and ecological economy. At the same time, without affecting the performance of graphene, the method is in favor of further expanding the potential application scope of graphene.
Owner:SOUTH CHINA UNIV OF TECH

Lithium-rich manganese-based cathode material precursor, cathode material and preparation method thereof

ActiveCN106564967AAccelerates and intensifies the mass transfer processWell mixedMaterial nanotechnologyCell electrodesNickel saltManganese
The invention belongs to the field of electrode material preparation and relates to a lithium-rich manganese-based cathode material precursor, a cathode material and a preparation method thereof. The preparation method comprises the following steps: mixing metal salts (manganese salt, cobalt salt and nickel salt) and a surfactant and water, and dissolving to obtain a metal salt solution; putting a precipitant in water, stirring and dissolving to obtain a precipitant solution; carrying out liquid-liquid coprecipitation reaction on the metal salt solution and the precipitant solution in a hypergravity field reactor, filtering, cleaning, and carrying out vacuum drying so as to obtain a precursor; mixing the precursor and lithium salt and then calcining so as to obtain the lithium-rich manganese-based cathode material. By the coprecipitation method based on the hypergravity technology, the lithium-rich manganese-based cathode material precursor with primary particle being below 100 nm and secondary particle being 1-10 microns is rapidly prepared, and furthermore the prepared cathode material has advantages of uniform component distribution and particle size distribution, small granularity and high activity. Initial irreversible capacity can be reduced, and cycle performance of a lithium ion secondary battery can be enhanced.
Owner:ADVANCED TECHNOLOGY & MATERIALS CO LTD

Polystyrene/calcium alginate composite gel microsphere in nuclear shell structure and preparation method thereof

The invention provides a polystyrene/calcium alginate composite gel microsphere in a nuclear shell structure and a preparation method thereof, relating to biopolymer materials. The polystyrene/calcium alginate composite gel microsphere in the nuclear shell structure takes a polystyrene microsphere as a core and calcium alginate gel as a shell, wherein the grain size of the core is 1-100 microns, and the thickness of the shell layer is 50-800 nm. The preparation method comprises the following steps of: mixing polystyrene microsphere with aqueous solution containing a surface active agent I, and carrying out ultrasonic emulsification to obtain mixed solution A; adding sodium alga acid solution in the mixed solution A, and stirring to obtain mixed solution B; adding organic solution containing a surface active agent II into the mixed solution B, and stirring to obtain mixed solution C; adding calcium chloride solution which has the same volume with the sodium alga acid solution into the mixed solution C under stirring to react, and carrying out vacuum filtration, washing the solution until no calcium ion residue exists on the surface and drying to obtain a product D; and dispersing the product D into water, centrifuging the mixture, pouring out supernate and taking out precipitate to obtain the product.
Owner:XIAMEN UNIV

Preparation method of nano molybdenum disulfide (MoS2) hydrogenation catalyst exposed at high active site

The invention discloses a preparation method of a nano molybdenum disulfide (MoS2) hydrogenation catalyst exposed at a high active site. The preparation method comprises the following steps: dissolving or dispersing a certain amount of molybdenum source and sulfur source in a high-viscosity solution, and adding a reducing agent to obtain a solution or suspension liquid; adjusting and controlling the types of the molybdenum source, the sulfur source, the solvent and the reducing agent; putting the prepared solution or suspension liquid into a closed stainless steel reactor, controlling the reaction temperature to be 120-240 DEG C, and controlling the reaction time to be 3-72 hours; and after the reaction is finished, performing cooling, suction filtration, washing and drying to obtain the nano MoS2 hydrogenation catalyst exposed at the high active site. The synthetic method disclosed by the invention has the advantages of mild conditions, simple operation, high yield and the like, and the prepared nano MoS2 catalyst with expanded interlayer spacing and few layers has a high hydrogenation active site exposure rate. The nano MoS2 hydrogenation catalyst exposed at the high active site,synthesized by the method disclosed by the invention, has very high catalytic hydrogenation activity when being applied to the field of catalytic hydrogenation of oil products.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Preparation method for organosilicone positive ion waterborne polyurethane

The invention relates to a preparation method for organosilicone positive ion waterborne polyurethane. The preparation method comprises the following steps: (1) reacting diethylamine with allyl chloride in the presence of an alkaline to generate diethyl allylamine; (2) carrying ring opening on D4 under the effect of a catalyst and blocking by using HMM (hexamethylmelamine) to generate dihydro-blocked polysiloxane; (3) carrying out hydrosilylation reaction on dihydro-blocked polysiloxane and diethyl allylamine; (4) carrying out quaternization reaction on the production of the addition reaction and chloropropanol; and (5) generating a prepolymer through reaction between HMDI and PTMEG1000 and extending chains in water by using the quaternization product to generate the organosilicone positive ion waterborne polyurethane. The preparation method provided by the invention is simple and convenient to operate, mild in reaction condition, free of carbonization and products are easily separated and recycled. Firstly, polysiloxane with amido at two terminals is salified and then chains are extended, and the conventional step of salifying positive ions with an acid and then neutralizing is cancelled, so that use of a nitrogen-containing chain extender is reduced, the cost is saved and the problem that positive ion polyurethane gets yellow is prevented.
Owner:QILU UNIV OF TECH

Silver phosphate/titanium dioxide nanocomposite and preparation method thereof

The invention discloses a silver phosphate / titanium dioxide nanocomposite. The silver phosphate / titanium dioxide nanocomposite is formed by silver phosphate nanoparticles and titanium dioxide nanofibers according to a mole ratio of (0.2-2) to 1, wherein the silver phosphate nanoparticles are loaded on the surfaces of the titanium dioxide nanofibers to form heterojunctions. A preparation method of the silver phosphate / titanium dioxide nanocomposite comprises the following steps: (1) preparing a spinning solution from butyl titanate, polyvinylpyrrolidone, dimethylformamide and an acid solution, and preparing titanium dioxide nanofibers by an electrostatic spinning manner; (2) dispersing the titanium dioxide nanofibers in deionized water, adding silver salt, and stirring without light; (3) preparing a dihydric phosphate solution, dropwise adding the dihydric phosphate solution into the solution prepared by the step (2) by magnetically stirring without light, and reacting to obtain the silver phosphate / titanium dioxide nanocomposite. The composite has double functions and are relatively high in catalytic activity in an ultraviolet light area and a visible light area. The method is simple and liable to operate, high in repeatability, mild in synthesis condition and low in cost, and is suitable for industrial production.
Owner:ZHEJIANG SCI-TECH UNIV

Reactive intumescent flame retardant for polyurethane and synthesis method of reactive intumescent flame retardant

InactiveCN102585135ADoes not affect mechanical propertiesHigh phosphorus and nitrogen flame retardant ingredientsGroup 5/15 element organic compoundsHalogenHigh carbon
The invention discloses a reactive intumescent flame retardant for polyurethane and a synthesis method of the reactive intumescent flame retardant, relates to a flame retardant technology, in particular to a novel intumescent flame retardant which contains an acid source, a carbon source and a gas source simultaneously and contains a hydroxyl group serving as an active group. The chemical name ofthe reactive intumescent flame retardant for polyurethane is 3,9-di{N,N-di(2-ethoxyl)-amino}-2,4,8,10-4-oxo-3,9-diphosphate spiro-3,9-dioxo-[5,5]-undecane. The structure of the reactive intumescent flame retardant is shown as a formula (I). The synthesis method comprises the following steps of: adding 3,9-di{N,N-di(2-ethoxyl)-amino}-2,4,8,10-4-oxo-3,9-diphosphate spiro-3,9-dioxo-[5,5]-undecane into water; dropwise adding diethanolameine and triethylamine at the temperature of 0-5 DEG C; reacting at the temperature of 50-60 DEG C for 4-6 hours; concentrating under reduced pressure; purifying; and performing vacuum drying to obtain the flame retardant. The flame retardant and the synthesis method of the reactive intumescent flame retardant have the advantages of integration of phosphorus, nitrogen and carbon, high phosphorus and nitrogen flame-retardant ingredients, no containing of halogen, nontoxicity, environmental friendliness, high carbon forming property, high compatibility with apolyurethane system, simple process, mild synthesis condition and suitability for industrial implementation.
Owner:ZHONGBEI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products