Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

96results about How to "Lower reaction barrier" patented technology

Method for fluidized catalytic decomposition of gypsum

The invention discloses a method for fluidized catalytic decomposition of gypsum. The method comprises the following steps: mixing gypsum with a metal oxide molecular sieve catalyst evenly, and adding to a fluidized reactor; feeding a sulphur gas from the bottom of the fluidized reactor, enabling the sulphur gas with a solid material, and reacting for decomposing the gypsum; washing a solid phase obtained by reaction with steam, wherein the washed solid phase is the metal oxide molecular sieve catalyst; drying and using in cycle; condensing the washed gas phase to obtain a Ca(OH)2 turbid liquid for preparation of a calcium salt; preparing sulphur employing individual uncondensed gas phase or SO2 in a gas-phase product obtained by decomposition reaction of the uncondensed gas phase and the gypsum according to claus reaction, and using the sulphur as a reducing agent in cycle; carrying out dust removal on the gas phase obtained by decomposition reaction of the gypsum, cooling and separating to obtain insoluble sulphur; and using the soluble sulphur as the reducing agent in cycle, and preparing the sulphur from the residual gas phase and H2S for cyclic use as the reducing agent or production of sulfuric acid. The gypsum decomposition is low in energy consumption and high in decomposition rate; the additional value of the product is high; and the process is environment-friendly and advanced.
Owner:SICHUAN UNIV

Preparation method of mesoporous nitrogen-doped graphene-loaded molybdenum disulfide synthesized by laser irradiation and application of mesoporous nitrogen-doped graphene-loaded molybdenum disulfide in electrocatalytic hydrogen production

The invention relates to a preparation method of mesoporous nitrogen-doped graphene-loaded molybdenum disulfide synthesized by laser irradiation and application of the mesoporous nitrogen-doped graphene-loaded molybdenum disulfide in electrocatalytic hydrogen production. In order to solve the problems that by an existing synthesis process, transition metal oxide/sulfide composite mesoporous nitrogen-doped graphene rich in carbon-pyridine nitrogen metal bonds cannot be synthesized at low temperature and under low pressure, and the content of the carbon-pyridine nitrogen metal bonds in the composite system cannot be regulated and controlled effectively, it is found that the content of the carbon-pyridine nitrogen-molybdenum bonds in the composite catalyst can be improved by irradiating graphene oxide with laser in a range of 177-315 mJ, and in a hydrothermal process, the mass ratio of laser irradiation graphene oxide to tetrathiomolybdic acid as raw materials is 1: 1-1: 8, the loading amount of the molybdenum disulfide on mesoporous graphene can be optimized, thus, while the conductivity of the molybdenum disulfide is improved, the intrinsic activity of the molybdenum disulfide can also be improved synergistically by the carbon-pyridine nitrogen molybdenum bonds at an interface, and the electrocatalysis process of HER is promoted. The preparation method is simple in process, ingenious in design and low in cost, and is safe and environmentally friendly.
Owner:TIANJIN UNIV

Method and device for methane reforming with chemical chain CO2 by applying CO2 to dimethyl ether synthesis

The invention provides a method for methane reforming with chemical chain CO2 by applying CO2 to dimethyl ether synthesis. The method comprises the following steps: performing oxidation reduction reaction on Fe3O4 and CH4 in a CH4 oxidation reactor to generate H2, CO and FeO, using H2 and CO as gas sources of dimethyl ether synthesis and transferring FeO into a CO2 reduction reactor; performing oxidation reduction reaction on FeO and CO2 in the CO2 reduction reactor to generate CO and Fe3O4; and using CO as a gas source of dimethyl ether synthesis and returning Fe3O4 to the CH4 oxidation reactor. The invention further provides a device for realizing the method. The device comprises the CH4 oxidation reactor, the CO2 reduction reactor, a first gas-solid separator, a second gas-solid separator, a CO2 absorption device and a dimethyl ether synthesizer. According to the method disclosed by the invention, partial oxidation of CH4 and CO2 reduction in the methane reforming reaction with CO2 are performed in two steps in different reactors through chemical chain combustion with Fe3O4 as the oxygen carrier, so that the reaction energy barrier is reduced, the reaction efficiency is improved, and the method and the device disclosed by the invention have good industrial application prospect.
Owner:HUAZHONG UNIV OF SCI & TECH

Rhodium-doped strontium titanate ultrathin nano-layer covered bismuth vanadate photoanode, and preparation method and application thereof

The invention discloses a rhodium-doped strontium titanate ultrathin nano-layer covered bismuth vanadate photoanode, and a preparation method and application thereof. A BiOI precursor is deposited onthe surface of a fluorine-doped tin oxide (FTO) in a mode of electrochemical deposition; a 0.2M vanadyl acetylacetonate solution is used for exchanging to obtain a bismuth vanadate electrode, and excess V2O5 is removed by using a NaOH solution; and the BiVO4-Rh-SrTiO3 photoanode is synthesized. According to the rhodium-doped strontium titanate ultrathin nano-layer covered bismuth vanadate photoanode provided by the invention, after SrTiO3 subjected to Rh doping is compounded with BiVO4, the photoelectrochemical performance is obviously improved; the electrochemical performance is best when theRh doping amount is 5%; the effect of a heterojunction formed between the BiVO4 and the Rh5%-SrTiO3 is very weak, so that the Rh5%-SrTiO3 exerts a good effect of producing oxygen and assisting catalysis, and the reaction energy barrier of the electrode and an electrolyte contact interface is effectively reduced. In addition, reaction activity sites of the contact interface are increased, so thatholes in a bismuth vanadate valence band can be effectively transferred to the surface of the electrode for an oxidation reaction with water, and the photogenerated electron holes are effectively separated.
Owner:西安睿电生物科技有限公司

Glass refining agent and preparation method thereof

The invention relates to a glass refining agent and a preparation method thereof, and belongs to the field of the glass refining agents. Catalytic oxygen evolution is performed through catalyst additive release by gas; meanwhile, the assembly is formed with ferriporphyrin; the catalysis active center sites are increased; the catalysis process is promoted; water steam and glass melt take reaction at the molten high temperature; the viscosity and surface tension of the glass are reduced; the bubble discharge is promoted; a branched structure is formed through an extrusion foam discharge agent; the flowability of a refining agent is improved; substances with elastic structures and good mechanical performance form elastic deformation, so that the extrusion discharging of bubbles is further promoted; the glass crystallization is induced through light transmission nucleation additives; the light effect of the glass is improved, so that the transparency of the glass is improved; auxiliary additives are added in an auxiliary way to realize the coordination participation into a glass silica network structure; the softening point of the glass is improved; the better melting is realized. Theglass refining agent and the preparation method solve the problems that by using the existing glass refining agent, micro bubbles liable to occur on the glass plate surface, and flaws are caused.
Owner:胡莉

Preparation of manganese phthalocyanine modified oxhorn-shaped carbon-based catalyst and CO2 electric reduction method

The invention relates to the technical field of building materials, and aims to provide a preparation method of a manganese phthalocyanine modified oxhorn-shaped carbon-based catalyst. The preparationmethod comprises the following steps: calcining a mixture of ammonium bromide and melamine to obtain carbon nitride, and pyrolyzing in a nitrogen atmosphere; and cleaning and drying the product to obtain the oxhorn-shaped carbon-based catalyst; dispersing the manganese phthalocyanine modified oxhorn-shaped carbon-based catalyst into an N-N-dimethylformamide solution, performing ultrasonic treatment, adding manganese phthalocyanine molecules, performing ultrasonic treatment, stirring, cleaning and drying to obtain the manganese phthalocyanine modified oxhorn-shaped carbon-based catalyst. The product provided by the invention has rich porous structure, high specific surface area, high content of pyridine nitrogen and pyrrole nitrogen active sites and good conductivity, and is an efficient cathode catalyst. The carbon-based catalyst with the horn-shaped structure has a tip effect to enrich charges under the action of an electric field, so that the efficient reduction reaction of CO2 is promoted. Manganese single atoms in phthalocyanine manganese molecules are used as active sites, so that the reaction energy barrier of reducing CO2 into an intermediate product COOH * is reduced, theconversion reaction of CO2 into a CO gas product is promoted, and the Faraday efficiency is high.
Owner:ZHEJIANG UNIV

High-emissivity and high-entropy ceramic material and preparation method and application thereof

The invention provides a high-emissivity and high-entropy ceramic material and a preparation method and application thereof, and belongs to the technical field of high-entropy ceramic materials. Five rare earth elements with different doping proportions are simultaneously introduced into the crystal lattice position of La, the number of impurity energy levels between the valence band top and the conduction band bottom of LaMgAl11O19 is increased, the forbidden band width is reduced, electrons in the impurity energy levels can absorb energy of infrared light to jump to the conduction band, and then the spectral emissivity of the corresponding wave band is improved; according to the invention, Pr, Ce or Eu elements with variable valence are introduced into the LaMgAl11O19 ceramic material, and when the valence state of the Pr, Ce or Eu elements is changed, the concentration of free electrons in a system can be increased (for example, the valence of Pr < 3 + > is changed to Pr < 4 + >) so that the absorption of free carriers to infrared light is promoted, and the improvement of spectral emissivity is also facilitated. The spectral emissivity of the ceramic material in the infrared band of 3-5 [mu] m is greater than 0.85, and the ceramic material has a good application prospect.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Chemical corrosion preparation method of porous CeO2 loaded perovskite composite catalytic material

The invention provides a chemical corrosion preparation method of a porous CeO2 loaded perovskite composite catalytic material. The chemical corrosion preparation method comprises the following steps:(1) preparing a solution; (2) preparing a precursor; (3) performing chemical corrosion; (4) performing calcining treatment. The method, being different from a traditional preparation method, has theadvantages that perovskite in-situ loading is realized while the porous CeO2 carrier is synthesized by utilizing a chemical corrosion method, multi-step deposition or impregnation is not needed, and the porous structure composite catalyst can be generated in situ only by calcining a one-step synthesized precursor, corroding off sacrificial oxide and performing proper heat treatment. A surface-loaded perovskite stacking structure is prepared into a supporting pore structure with a nano-pore channel, so that in-situ loading of perovskite is realized and a firmer interface is formed; therefore, harmful pollutants can be in more effective contact with a catalyst, and the effect of a porous structure, especially a perovskite active phase loaded on the porous structure, is brought into full play, so that the catalytic activity of the catalyst is improved. Besides, the agglomeration and growth of the active phase nano-particles in the heating or service process can be inhibited.
Owner:SHIJIAZHUANG TIEDAO UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products